Sri Kaliswari College (Autonomous), Sivakasi

Department of Mathematics

Course Outcomes

M.Sc. Mathematics

S.No	Course Code	Course Name	Course Outcomes	
		SEMEST	'ER- I	
1.	1. 23PMAC11		CO1[K1]:	describe the fundamental theorems related to counting principles, solvable groups, modules and linear transformation
		Core Course –I: Algebraic Structures	CO2[K2]:	explain the basic concepts of Sylow's theorem, solvable groups,canonical forms of linear transformations
			CO3[K3]:	apply the abstract concepts to produce proofs of results that arise in the context of algebraic structures
			CO4[K4]:	investigate the counting principle, structure of module, various canonical forms and types of linear transformations
			CO5[K5]:	determine the class equation for finite groups, solvability of groups, similarity of linear transformations by reducing them to canonical forms, trace and transpose, real quadratic forms of linear transformations
2.	23PMAC12	Core Course –II:Real Analysis I	CO1[K1]: CO2[K2]:	describe the basic terminologies of real number system explain the concept of total variation, Riemann- Steiltjes integral, infinite series,

			CO3[K3]: CO4[K4]:	infinite functions and sequence of functions apply the abstract concepts to produce proofs of results that arise inthe context of real analysis examine the criterion for the existence of Riemann integrals, convergence of infinite series and sequence of functions
			CO5[K5]:	determine the total variation and Riemann integrals of bounded variation functions, sum of infinite series and limit of sequence functions
3.			CO1[K1]:	state the general form of linear ordinary differential equations of first order, second order and the method of finding solutions
			CO2[K2]:	find the solution of initial value problem
		Core Course -III: Ordinary Differential Equations	CO3[K3]:	solve linear ordinary differential equations
	23PMAC13			coefficients and with regular singular points
		*	CO4[K4]:	examine the existence and uniqueness of
				solutions of linear ordinary differential equations
			CO5[K5]:	determine an appropriate method to solve,
				linear ordinary differential equations
4.			CO1[K1]:	describe the fundamental understanding of
		Elective Courses Generic/		the history of artificial intelligence and its
	23PMA011	Discipline Specific - I: Machine	CU5[K5]	explain various techniques and algorithms of
		Learning and Artificial Intelligence		artificial intelligence used ingeneral problem solving
			CO3[K3]:	apply basic principles of artificial intelligence

			CO4[K4]: CO5[K5]:	in finding solution of business problem demonstrate proficiency in applying scientific method to models of machine learning choose a model that best fits the available data
5.			CO1[K1]:	describe the basic definitions and concepts of granh theory
			CO2[K2]:	find the solution of graph theoretical model using the given algorithm
	23PMA012	Discipline Specific - I: Graph Theory	CO3[K3]:	apply the abstract concepts to produce proofs of results that arise in the context of graph
		and Applications		theory
			CO4[K4]:	investigate the characteristic features of various types of graphs
			CO5[K5]:	determine the efficient algorithm to solve graph optimisation problems
6.			CO1[K1]:	state the basic definitions and terminologies of fuzzy set theory
		Elective Courses Generic/ Discipline Specific - II: Fuzzy Sets and their Applications	CO2[K2]:	explain the fundamental concepts in fuzzy set theory
	23PMA013		CO3[K3]:	apply the abstract concepts to produce proofs of results that arise inthe context of fuzzy set theory
			CO4[K4]:	investigate the different classes of fuzzy relations, operations on fuzzysets and fuzzy numbers
			CO5[K5]:	validate the axioms, assumptions, beliefs, arguments, deductions, hypothesis concerning fuzzy sets, fuzzy relations, fuzzy arithmetic

7.	7.			CO1[K1]:	describe the basic terminologies in inference theory, predictivecalculus, precedence grammar, switching circuits and computabilitytheory
				CO2[K2]:	explain the rules, procedures, algorithms related to inference theory, predictive
			Elective Courses Generic/		calculus, precedence grammar, switching
	23PMA014	Discipline Specific – II: Discrete Mathematics		CO3[K3]:	solve problems related to inference theory,
					computability theory
				CO4[K4]:	investigate the properties of logical
				statements, precedence relations, acceptors	
					and grammars
				CO5[K5]:	validate the rules of inference, formulas
					involving quantifiers, algorithm for simple
					precedence grammars and fault detection
			SEMES I	ER-II	
				CO1[K1]:	describe the fundamental elements of
					extension fields and finite fields
				CO2[K2]:	explain the basic concepts of extension fields and finite fields
				CO3[K3]:	apply mathematical/ logical argument for
8.	23PMAC21	Co	re Course –IV: Advanced Algebra		proving criterions and characterizations of
					field theory and Galois Theory
				CO4[K4]:	examine the characterizations of extension
					fields, finite fields, roots of polynomials and
				0050753	Galois group
				CO2[K2]:	determine the extension of fields, solvability

				of groups, irreducibility of polynomials and Galois group of polynomials
			CO1[K1]:	describe the basic terminologies in measure theory, integration of functions of a real variable, Fourier integrals, Multivariable differential calculus, extremum problems
			CO2[K2]:	explain the fundamental concepts of measure on the real line, integration of functions of a real variable, Fourier integrals, multivariable differential calculus, extremum problems
9.	23PMAC22	Core Course –V: Real Analysis II	CO3[K3]:	apply the abstract concepts to produce proofs of results that arise in the context of measure theory, integration and differentiation of functions of a real valued functions
			CO4[K4]:	characterize measures on real line, Riemann and Lebesgue integrals, Fourier series and Fourier integrals, derivative of multivariable functions, implicit functions
			CO5[K5]:	determine the measurability and integrability of functions, the convergence of Fourier series, Differentiability of multivariable functions, extrema of real valued functions of severable variable
			CO1[K1]:	identify the general form of partial differential equation
10.	23PMAC23	Core Course – VI: Partial Differential Equations	CO2[K2]:	explain the methods of solving partial differential equations
			CO3[K3]:	apply the methods to solve Cauchy problem, initial value problem,boundary value

				problems, Neumann problem, Dirichlet problem, wave equations
			CO4[K4]:	examine the existence and uniqueness of the solution of partial differential equations
			CO5[K5]:	determine the appropriate method to solve problems related to partial differential equations
			CO1[K1]:	state the basic concepts and techniques in sampling theory and theory of statistical inference
11.	23PMA021		CO2[K2]:	explain the method of finding distribution function of random variablesand the testing process of hypothesis
		Elective Courses Generic/ Discipline	CO3[K3]:	apply the common test statistics to test
		Specific - III: Mathematical Statistics		statistical hypothesis and themaximum likelihood methods to find estimator of parameters
			CO4[K4]:	examine a particular hypothesis by the statistical inference of the given data
			CO5[K5]:	assess the strength of the conclusion of the statistical inference
			CO1[K1]:	describe the application of mathematics and mathematical modeling to solve financial problems
		Elective Courses Generic/ Discipline	CO2[K2]:	explain the basic mathematical concepts
12.	23PMA022	Specific - III: Financial Mathematics	CO3[K3]:	solve financial problems using mathematical models
			CO4[K4]:	analyze the mathematical models of financial problems
			CO5[K5]:	evaluate the solution of the mathematical

				models of financial problems
			CO1[K1]:	describe the fundamental theories in
				arithmetic and cryptography
			CO2[K2]:	explain the basic concepts in number theory
				and the various ciphers incryptography
		Flasting Courses Constraint (Dissimilian	CO3[K3]:	apply the abstract concepts to produce proofs
		Elective Courses Generic/ Discipline		of results that arise in the context of number
13.	23PMA023	Specific - IV: Number Theory and		theory
		Cryptography	CO4[K4]:	analyze the theory of quadratic residues and
				primitive roots, types ofcongruences
			CO5[K5]:	determine the existence and non-existence of
				primitive roots mod p, quadratic residues mod
				m, solutions of congruences, averages
				ofarithmetic functions
			CO1[K1]:	state the basic terminologies in neural
	23PMAO24			network
		Elective Courses Generic/ Discipline	CO2[K2]:	explain the features/principles/laws of neural
14				network, neural network models
14.		Specific - IV: Neural Networks	CO3[K3]:	apply the basic principles/ laws of neural
		•		network to build a neural network model
			CO4[K4]:	classify the types of neural networks and
				characterize their characteristic
			CO5[K5]:	evaluate the pattern recognition problem
			CO1[K1]:	describe the basic terminologies in statistics
			CO2[K2]:	explain the tools and techniques of statistics
15		NON MAIOR ELECTIVE COURSE -I:	CO3[K3]:	find various measures of descriptive statistics
13.	23PMAN21	STATISTICS FOR LIFE SCIENCES	CU4[K4]:	analyze the quantitative data and calculate
			COFINE	different statistical measures
			CO2[K5]:	choose the appropriate statistical measures to
				interpret the data

	SEMESTER- III				
			CO1[K1]:	describe the methods and techniques of complex integration	
			CO2[K2]:	explain the basic concepts, theories,	
				properties of functions of acomplex variable	
			CO3[K3]:	apply the abstract concepts to produce proofs	
				of results that arise in the context of analytic	
16.	22PM4C21	Core Course-VII: Compley Analysis		functions	
	251 MAC51	core course-vii. complex Analysis	CO4[K4]:	interpret the several forms of Cauchy's	
				theorem, the properties of harmonic and entire function	
			CO5[K5]:	evaluate the definite integrals by the method	
				of residues, the series expansion, partial	
				fractions, infinite products, canonical products	
				of analytic functions	
			CO1[K1]:	state the general probability rules and axioms,	
				basic terminologies of probability theory	
			CO2[K2]:	explain the method of finding various	
				parameters of probability distributions,	
				characteristic functions of random variables	
				and the condition for the convergence	
17.	23PMAC32	Core Course -VIII: Probability Theory	CU3[K3]	find the conditional probability of random	
			costroj.	events various parameters of probability	
				distributions, characteristic functions of	
				random variables	
			CO4[K4]:	investigate the characteristics of probability	
				distributions and its parameters, limits of	
				sequence of distribution functions	

			CO5[K5]:	determine various parameters of distributions of random variables, distribution function by the characteristic function
			CO1[K1]:	define and illustrate the basic concepts of
				topological spaces
			CO2[K2]:	express connectedness, compactness of a
				topological spaces
			CO3[K3]:	apply the abstract concepts to produce proof of
10				results that arise in the context of general
10.	23PMAC33	Core Course–IX: Topology	00 (11/4)	topology
			CO4[K4]:	explore the characterizations of countability,
			COFINEL	separation axioms and continuity of functions
			CO2[K2]:	evaluate the results that characterizes
				continuity of functions, connectedness,
				avions
			C01[K1]-	state the laws and facts of mechanics
			CO1[K1].	explain the core principles in mechanics
	23PMAC34		CO2[K2].	apply the core concepts and principles to solve
			COS[KS].	complex problems in classical mechanics
			CO4[K4]-	interpret Lagrange's equation Hamilton's
19.		Core Course-X : Mechanics	COTINTJ.	equations Hamilton – Jacobi equations and
				Canonicaltransformations of co-ordinates
			CO5[K5]:	determine energy and momentum of
			cooluol.	mechanical systems, integrals of motion and
				separability of Hamilton
			CO1[K1]:	describe the basic terminologies of algebraic
20	000140004	Elective Courses Generic/Discipline		
20.	22DMA021	Specific - V: Algebraic Number Theory		number theory
20.	23PMA031	Specific - V: Algebraic Number Theory	CO2[K2]:	number theory explain the tools and techniques of abstract

			CO3[K3]: CO4[K4]:	theory questions apply the abstract concepts to produce proof of results that arise in the context of algebraic number theory analyze the method of factorization/prime factorization of polynomials, factorization of an algebraic integer into irreducibles, prime factorization of ideals
			CO5[K5]:	determine the uniqueness of factorization/prime factorization of polynomials,factorization of an algebraic integer into irreducibles, prime factorization of ideals
21.	23PMA032	Elective Courses Generic/ Discipline Specific - V: Stochastic Processes	CO1[K1]: CO2[K2]: CO3[K3]: CO4[K4]: CO5[K5]:	describe the basic terminologies in stochastic processes explain the general theory and properties of probability distributions and random processes compute the probability distribution of various random processes classify random processes according to state space and parameter space evaluate the statistical properties of random processes
22.	23PMAN31	Non-Major Elective Course II: Statistics for Social Sciences	CO1[K1]: CO2[K2]: CO3[K3]:	describe the basic terminologies of index numbers and time series explain the methods of finding index numbers and trend values, variations of the series calculate the value of index numbers and trend values, variations of timeseries

			CO4[K4]:	classify the types of index numbers and trend
			CO5[K5]:	choose the appropriate method of finding index numbers and trend values to draw valid inference
		SEMESTI	ER- IV	
			CO1[K1]:	describe the basic concepts, principles and methods of functionalanalysis
			CO2[K2]:	explain the various operators and fundamental
23.		Core Course –XI: Functional Analysis		theorems on Banach spaces,Hilbert spaces, Banach algebras
	23PMAC41		CO3[K3]:	apply the analytical technique and theoretical
				knowledge to produce the proofs of results
				that arise in the context of functional analysis
			CO4[K4]:	examine the characterizations of Banach
				spaces, Hilbert spaces and Banach algebra
			CO5[K5]:	evaluate the structure of Banach spaces,
			00457741	Hilbert spaces, Banach algebras
			CO1[K1]:	describe the basic concepts of space curves and
			CO3[V3].	surfaces
			CO2[K2]:	explain the theory of space curves and surfaces
			CUS[KS]:	apply the abstract concepts to produce the
24.	23PMAC42	Core Course -XII: Differential Geometry		surface theory
			CO4[K4]·	investigate the properties of various surfaces
				in the Euclidean space
			CO5[K51:	evaluate the problems on space curves and
				surfaces
25.	23PMAJ41	Core Course -XIII: Project with VivaVoce	CO1[K1]:	identify the unexplored areas of research

			CO2[K2]:	outline the objectives in formulating a research paper
			CO3[K3]:	apply the latest rules of documentation to cite Print, Non-print and Web Publications in a research paper
			CO4[K4]:	analyze the stages in writing a thesis –
				collecting and evaluating Sources and drafting
				documentation
			соэгкој:	with adequate discussion interpretation and
				evaluation
			CO1[K1]:	describe the basic terminologies in algebraic
				topology
			CO2[K2]:	explain the fundamental concepts of algebraic
				topology
			CO3[K3]:	apply the abstract concepts to produce the
26	22PMA041	Elective Courses Generic/Discipline		proofs of results that arise in the context of
20.	231 MAOTI	Specific - VI. Algebraic Topology	COATVAL.	algebraic topology
			CO4[K4]:	analyze the characterization of simplicial
				covering spaces
			CO5[K5]:	evaluate the structure of simplicial homology
				groups, the fundamental groups and covering
				spaces
			CO1[K1]:	describe the problem solving process in
		Elective Courses Generic/ Discipline		network models, inventory models, non-linear
27.	23PMA042	Specific - VI: Resource Management		programming problems, constrained and
		Techniques		unconstrained optimization
				problems
			CO2[K2]:	explain the methods and algorithms of finding

			CO3[K3]:	the optimum solution of network models, inventory models, non-linear programming problems, constrained and unconstrained optimization problems solve network models, inventory models, non- linear programming problems, constrained and unconstrained optimization problems
			CO4[K4]:	investigate the solutions of network models, inventory models, non-linear programming problems, constrained and unconstrained optimization problems
			CO5[K5]:	determine the appropriate method of solving network models, inventory models, non-linear programming problems, constrained and unconstrained optimization problems
28.	23PMAS41	SkillEnhancementCourse:Professional Competency Course: Training for Competitive Examinations	CO1[K1]: CO2[K2]:	identify the formulas, identities related to binomial theorem, mathematicalinduction, permutation, combinations and describe the basic terminologies in reasoning, teaching aptitude and research methodology explain the concepts related to teaching aptitude, research methods, reasoning, binomial theorem, mathematical induction, permutation and combinations
			CO3[K3]:	apply the concepts of reasoning, permutation and combination, mathematical induction, binomial theorems, teaching aptitude and researchmethodology to answer questions

	CO4[K4]:	explore the choices of possible answers to the
		questions in competitiveexaminations
	CO5[K5]:	choose the best answer to the questions in
		competitive examinations