Affiliated to Madurai Kamaraj University, Madurai Re-accredited with 'A' grade (3" cycle) by NAAC with CGPA 3.11 A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

M.SC. CHEMISTRY

Department of Chemistry

M. Sc. Chemistry

S.No.	Course Code	Course Name	Course Outcomes
			SEMESTER - I
1.	21PCHC11	Core Course - I: Reaction Mechanism And Stereochemistry	 CO1[K2]: explain reaction mechanism by kinetic and non-kinetic methods, substitution reactions using nucleophiles and electrophiles and stereochemistry CO2[K3]: determine aromaticity and stereochemistry of organic molecules CO3[K4]: compare the substituent effect through kinetic and non-kinetic methods, aromaticity and antiaromaticity and stereochemistry of mono and disubstituted cycloalkanes CO4[K5]: deduce the mechanism of various types of nucleophilic substitution reaction and asymmetric synthesis CO5[K6]: assimilate the knowledge of reaction intermediates and stereochemistry to propose a mechanism for the given reaction.

M.SC. CHEMISTRY

Affiliated to Madurai Kamaraj University, Madurai Re-accredited with 'A' grade (3" cycle) by NAAC with CGPA 3.11 A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
2.	21PCHC12	Core Course - II: Structure And Bonding	 CO1[K1]: describe the various concepts of bonding in covalent, ionic, inorganic polymers, chain, cages and cluster compounds CO2[K2]: interpret weak chemical forces and packing in solid state CO3[K3]: employ the concepts of hybridization, VB, VSEPR and MO theory to determine the shapes of various molecules in covalent, inorganic polymers, chain, cages and cluster compounds CO4[K4]: discriminate the structure and defects of crystals CO5[K5]: justify the structure and bonding of boranes, carboranes, metallocarboranes and metal clusters using Wade's Rule, Styx Number, isolobality and capping rule.
3.	21PCHC13	Core Course - III: Electrochemistry, Thermodynamics And Surface Chemistry	 CO1[K2]: explain the various laws of electrochemistry and thermodynamics CO2[K3]: present the concepts of overvoltage, corrosion, polarography, catalysis and applications of adsorption CO3[K4]: classify the types of electrodes, catalysis and adsorption CO4[K5]: deduce the various parameters of thermodynamics and electrochemistry CO5[K6]: elaborate the concepts and theories of surface and electrochemistry.

M.SC. CHEMISTRY

S.No.	Course Code	Course Name	Course Outcomes
4.	21PCHC1P	Core Course - IV: Practical: Organic Quantitative And Qualitative Analysis	 CO1[K2]: explain separation of organic mixture by chemical method CO2[K3]: perform organic analysis and preparation by following systematic procedure CO3[K4]: compare the estimation of glucose by different methods CO4[K5]: decide synthetic route for the preparation of organic compounds by multistep synthesis CO5[K6]: assemble principles of volumetric analysis for the quantitative estimation of organic compounds.
5.	21PCHO11	Elective Course - I: Green Chemistry	 CO1[K1]: outline the basic principle and methodology involved in the green chemistry CO2[K2]: explain the ultrasound &microwave assisted and PTC reactions CO3[K3]: present the concepts of green &sonochemistry, microwave technology and ionic liquids CO4[K4]: analyse role of green solvents, catalysts and renewable energy involved in the green synthesis CO5[K5]: predict the synthetic pathway of various organic reactions using greener solvents, catalyst, ionic liquids, biomass and methods.

M.SC. CHEMISTRY

S.No.	Course Code	Course Name	Course Outcomes	
6.	21PCHO12	Elective Course - I: Material Chemistry	 CO1[K1]: recognize the basic knowledge on advanced materials based nanomaterials, silica based material, composite material and polymer materials CO2[K2]: classify different types of nano materials and polymer materials CO3[K3]: apply their knowledge in the field of nano chemistry for the preparation of new types of nano materials CO4[K4]: examine the ways of prediction of advanced materials CO5[K5]: assess the new types of materials used in the recent research trends. 	
7.	21PCHO13	Elective Course - I: Medicinal And Pharmaceutical Chemistry	 CO1[K1]: recognize the various terms used in medicinal and pharmaceutical chemistry CO2[K2]: express the structural features of various drugs used in pharmaceuticals CO3[K3]: draw the structure of various drugs used in pharmaceuticals CO4[K4]: classify the drugs based on their functions and classify the membrane bound receptors CO5[K5]: appraise the use of various drugs by its action. 	
	SEMESTER - II			

M.SC. CHEMISTRY

Affiliated to Madurai Kamaraj University, Madurai Re-accredited with 'A' grade (3" cycle) by NAAC with CGPA 3.11 A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
8.	21PCHC21	Core Course - V: Rearrangement, Name Reactions, Oxidation And Reduction	 CO1[K2]: interpret the type of reactions to be followed in the selected organic compounds CO2[K3]: apply the principles of addition, elimination, rearrangement reactions whenever needed CO3[K4]: compare addition and elimination reactions and reactivity of different oxidizing and reducing reagents CO4[K5]: deduce the mechanism of given reactions CO5[K6]: assemble the concept of reaction mechanism and propose scheme for organic reaction.
9.	21PCHC22	Core Course - VI: Coordination, Bioinorganic And Inorganic Photochemistry	 CO1[K1]: outline on the theories of coordination compounds, biologically important inorganic compound and basics of photochemistry CO2[K2]: express the various reaction mechanisms involved in coordination compounds and structure of bioinorganic compounds CO3[K3]: apply the reaction mechanism to synthesize coordination compounds CO4[K4]: examine the function of bioinorganic compounds and photochemistry of Cr, Co, Cu and Ru complexes CO5[K5]: deduce the importance of metals in medicine and toxicity.

S.No.	Course Code	Course Name	Course Outcomes
10.	21PCHC23	Core Course - VII: Group Theory, Equilibria And Statistical Thermodynamics	 CO1[K2]: explain symmetry operations, applications of group theory, concepts of statistical and non- equilibrium thermodynamics CO2[K3]: apply the concepts of group theory and thermodynamics to deduce the point groups and parameters of thermodynamics CO4[K3]: present the theories of phase and chemicalequilibria and quantum statistics CO5[K4]: examine the character tables, group multiplication tables, phase diagram for single and double salt CO5[K5]: predict hybridization and electronic transition of molecules using group theory and theorems of non-equilibrium thermodynamics.
11.	21PCHC2P	Core Course - VIII: Practical: Inorganic Quantitative And Qualitative Analysis	 CO1[K2]: estimate the amount of copper, calcium, ferrous and zinc present in the given solution by volumetrically and the amount of zinc, magnesium, copper and nickel by complexometric titration CO2[K3]: determine the amount of nickel, barium, zinc and copper present in the given solution by gravimetric method CO3[K4]: compare and contrast complexometry, gravimetry & volumetry CO4[K5]: predict the familiar and less familiar cations in the given inorganic salt mixture CO5[K6]: develop the skills and tricks in the inorganic qualitative and quantitative analysis.

M.SC. CHEMISTRY

S.No.	Course Code	Course Name	Course Outcomes
12.	21PCHN21	Non Major Elective Course: Chemistry For Healthy Living	 CO1[K1]: recognize the technical methods applied in the manufacture of various industrial products CO2[K2]: explain the raw materials used in chemical industries CO3[K3]: demonstrate properties and applications of polymers, leather and fuels CO4[K4]: classify fertilizers, polymers and fuels CO5[K4]: evaluate the raw materials used in the preparation of rubber industries.
			SEMESTER - III
13.	21PCHC31	Core Course - IX: Spectroscopy And Spectrometry	 CO1[K2]: interpret the different functional group, fragments of the molecule through IR and Mass spectra CO2[K3]: apply the principles of spectroscopy for the structural elucidation of the molecule CO3[K4]: inspect the structure of organic compounds through different spectroscopic techniques CO4[K5]: predict the molecular formula of organic compounds by elemental analysis data and structural formula by spectral data CO5[K6]: elaborate the structure and functional groups present in the organic compound by the application of UV, IR, NMR and Mass spectroscopy.

M.SC. CHEMISTRY

S.No.	Course Code	Course Name	Course Outcomes
14.	21PCHC32	Core Course - X: Nuclear, Organometalics And Inorganic Spectroscopy	 CO1[K2]: express the principle of the various spectroscopic techniques, organometallics and structure of nucleus CO2[K2]: explain the structure of inorganic compounds using given spectroscopic data CO3[K3]: apply the concept of spectroscopy in structural determination of inorganic compounds CO4[K4]: examine the splitting patterns of Mossbauer, NMR and ESR spectroscopy and structure of metal clusters CO5[K5]: evaluate the 10Dq and B values using electronic spectroscopy, spin-orbit coupling using ESR.
15.	21PCHC33	Core Course - XI: Spectroscopy And Photochemistry	 CO1[K2]: express the basic principle involved in the spectroscopy and photochemistry CO2[K3]: apply the principle of spectroscopy to identify the rotational, Vibrational and electronic translational involved in the molecules CO3[K4]: analyse the possible electronic transitions by applying selection rules and width and intensity of spectral lines and techniques in the photochemistry CO4[K5]: predict the structure of known and unknown compounds by various spectroscopic techniques CO5[K6]: eloborate the various types of spectra and physical properties of excited state of molecules.

Affiliated to Madurai Kamaraj University, Madurai Re-accredited with 'A' grade (3" cycle) by NAAC with CGPA 3.11 A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
16.	21PCHC3P	Core Course - XII: Practical: Physical Chemistry	 CO1[K2]: demonstrate adsorption, conductometric titration and potentiometric titration CO2[K3]: perform the precipitation titrations, potentiometric redox titrations and adsorption experiments CO3[K3]: apply the principle of conductometry and potentiometry to carry out precipitation and redox titration CO4[K4]: examine the strength of acid by adsorption experiments CO5[K5]: evaluate solubility product by potentiometric method and dissociation constant by conductometric methods.
17.	21PCHO31	Elective Course - II: Nuclear Reactions, Radiation Chemistry, Photoelectron Spectroscopy And Organometallics In Industry	 CO1[K2]: express the basic concepts of nuclear reactions, radiation, NQR, PES and magnetic behavior of complexes. CO2[K3]: apply concepts of nuclear and radiation chemistry in various fields CO3[K4]: compare CO4[K5]: measure the radioactivity by various techniques and examine the use of tracer isotopes in various fields CO5[K5]: appraise the applications of radioactive isotopes, NQR, PES and AES.

S.No.	Course Code	Course Name	Course Outcomes
18.	21PCHO32	Elective Course - II: Advanced Analytical Chemistry	 CO2[K2]: explain the principles applications of instrumentation techniques CO3[K3]: apply statistical procedure to carry out data analysis CO4[K4]: examine analytes by electro analytical, chromatographic and spectroscopic techniques CO5[K5]: assess electroanalytical techniques and spectroscopic techniques for chemical analysis. CO5[K5]: select suitable physical methods of characterization.
19.	21PCH033	Elective Course - II: Drug Design And Discovery	 CO1[K2]: express the various terms in pharmacology and its validation CO2[K3]: apply the retrosynthetic method and computer aided designing in the drug synthesis CO3[K4]: examine the various steps involved in drug discovery and its molecular interaction CO4[K5]: deduce the structural activity of drug using QASR studies CO5[K5]: evaluate the various physico-chemical parameters and predict the pharmacokinetics and pharmacodynamics mechanism and binding site of drugs.

M.SC. CHEMISTRY

S.No.	Course Code	Course Name	Course Outcomes		
20.	21PCHM31	Self Paced Learning (Swayam Course): Advanced Transition Metal Organometallic Chemistry	 CO1[K1]: identify the background and the key words in Advanced Transition Metal Organometallic Chemistry CO2[K2]: demonstrate independent and self-paced learning for clear understanding of the concept CO3[K3]: develop computer and communication skills to broaden their knowledge in the course CO4[K3]: use high quality reading resources, communication tools and technology to send assignments and to take up test CO5[K4]: analyse critically and apply technical skills to comprehend the ideas or theories in the video lectures. 		
21.	21PCHM32	Self Paced Learning (Swayam Course): Chemistry Of Main Group Elements	 CO1[K1]: identify the background and the key words in Chemistry of Main Group Elements CO2[K2]: demonstrate independent and self-paced learning for clear understanding of the concept CO3[K3]: develop computer and communication skills to broaden their knowledge in the course CO4[K3]: use high quality reading resources, communication tools and technology to send assignments and to take up test CO5[K4]: analyse critically and apply technical skills to comprehend the ideas or theories in the video lectures. 		
	SEMESTER - IV				

M.SC. CHEMISTRY

Affiliated to Madurai Kamaraj University, Madurai Re-accredited with 'A' grade (3" cycle) by NAAC with CGPA 3.11 A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
22.	21PCHC41	Core Course - XIII: Photochemistry, Pericyclic Reactions, Heterocycles And Natural Products	 CO1[K2]: illustrate various organic photochemistry and pericyclic reaction CO2[K3]: choose different methods to elucidate the structure of terpenoids, alkaloids and steroids CO3[K4]: discriminate different types of photochemical and electrocyclic reactions and reactivity of heterocycles CO4[K5]: critique the biological role of vitamins, Norrish type reaction, FMO approach the sigmatropic and cycloaddition reaction CO5[K6]: elaborate the structure of terpenoids, steroids, vitamins and alkaloids.
23.	21PCHC42	Core Course - XIV: Quantum And Chemical Kinetics	 CO1[K2]: outline the fundamentals involved in the chemical kinetics and quantum mechanics CO2[K2]: illustrate the basic concept of kinetics of fast and chain reactions, operators, approximation methods and salt effect of compounds CO3[K3]: apply quantum mechanics to derive Schrodinger's wave equation for simple systems and approximation method to determine energy CO4[K4]: examine the various types of quantum statistics and theories of kinetics CO5[K5]: appraise the theories of quantum mechanics and chemical kinetics.

S.No.	Course Code	Course Name	Course Outcomes
24.	21PCHC43	Core Course - XV: Research Methodology	 CO1[K1]: recognize the basic research ideas related to recent research, techniques and their methodologies CO2[K2]: outline the basic concepts of research, literature survey and computer techniques in chemistry CO3[K3]: apply the knowledge of fundamental concepts of chemistry in advanced research CO4[K4]: simplify the outcome of instrumental method of analysis with the aid of chemistry softwares CO5[K5]: appraise the ethics and art of science communication by developing the skill of effective thesis writing, paper writing and presentation inseminars and conferences.
25.	21PCHJ41	Core Course - XVI: Project	 CO1[K2]: demonstrate research ideas related to recent research through literature survey CO2[K3]: perform research work based on the knowledge acquired from research papers CO3[K4]: discriminate the products formed in synthetic work on the basis of characterisation by instrumentation techniques CO4[K5]: judge the result of research work and propose the mechanism of the reaction CO5[K6]: develop scheme for research in future, skill in thesis writing and publication of research work in reputed journals.