Name of the Department	$:$	Mathematics
Programme	$:$	UG

S.No	Course Code	Course Name	Course Outcome
SEMESTER - I			
1.	15UMAC11	Foundation Course Basic Mathematics	- Apply the rules of limits to calculate limits. - Use the limit concept to determine the point of continuity of a function. - Calculate derivatives of functions defined implicitly. - Calculate a definite integral as a limit of approximating sums. - Develop skill in 2 dimensional space - Find the distance between two points. - Find the centroid, incentre of the triangle.
2.	15UMAC12	Differential Calculus and its applications	- Understand the concept of differentiation. - Find the higher derivatives. - Gain an in-depth knowledge of partial differentiation using Euler's theorem. - Find critical points, and use them to locate maxima and minima. - Use the derivative to find tangent lines to curves. - Demonstrate the method of curve tracing
3.	15UMAN11	Fundamentals of Mathematics	- Able to find LCM and HCF of nmbers - Use sets and/or Venn diagrams to solve a stated problem - Learn the differentiation rules for products, quotients and the chain rule - Find critical points, and use them to locate maxima and minima.
4.	15UMAE11	MS-Office	- Demonstrate fundamental knowledge of MS Word. - Relate real-life MS Word applications for professional or personal use. - Develop an informal business letter. - Apply MS Word techniques to create promotional hand-outs. - Understand a Word Processor Create, Edit and

			Format documents - Work with Tables, Import and Export data between Files Proofing a Document Save, Protect and Print documents - Determine and use various workplace application software to develop, document, and manage office projects, procedures and systems
SEMESTER - II			
1.	15UMAC21	Theory of Equations	- Attain the basic knowledge about equations and to solve equations in different Methods - Learn the concept of rational roots, irrational roots, imaginary roots and the relation between the roots and coefficient of the equations. - Gain knowledge of symmetric function of the roots. - Make a good background on basic concepts of algebra. - Gain knowledge of removal of terms using theorems like Rolle's theorem and strum's theorem. - Find the roots of biquadratic and cubic equations by using Cardon's method.
2.	15UMAC22	Analytical Geometry $-3 D$	- Define and represent geometrical shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. - Enable the students to develop their skill in 3 dimensional Cartesian Co-ordinates system - Learn the properties of straight lines and spheres. - Derive the conditions for parallelism and perpendicularity of two lines.
3.	15UMAN21	Statistical Methods	- Enable the students to understand the meaning, definition, nature, importance and limitations of statistics. - Able to create, read, and interpret graphs, charts, histograms, and diagrams . - Understand and use the basic measure of central tendency.

			- Explain the relevance and use of statistical tools for analysis and forecasting.
4.	15UMAE21	Integral Calculus	- Classify angles as acute, right, obtuse, or straight. - Find measures of angles, parallel and perpendicular lines. - Find the missing measurements in a pair of similar triangles. - Understand the meaning of the derivative in terms of a rate of change and local linear approximation. - Familiarize themselves with the techniques of integration and differentiation of functions with real variables. - Able to compute the limit of a function when x $\rightarrow \infty$ - Write the equation of a line tangent to the curve of $f(x)$ at a given point. - Write given function in terms of sine and cosine terms in Fourier series and also to get knowledge in Fourier transforms. - Able to solve finite difference equations using Z transforms. - Able to solve improper integrals using beta, gamma functions. - Apply method of least square to find the curve of best fit for the given data.
SEMESTER - III			
1.	15UMAC31	Sequences and Series	- Provide a formal introduction to the concept of limit and compute the limits of sequences. - Gain knowledge of some simple techniques for testing the convergence of sequences. - Apply the properties of limits summarized in Theorems and recognize when a sequence is increasing, decreasing, bounded and monotonic. - Gain knowledge of the various aspects of divergence of sequences. - Relate the convergence or divergence of the series using the sequence of partial sums.

			- Recognize the infinite series and determine whether they converge or diverge. - Study about the integral test which shows the equivalence between the convergence of a series and that of an associated integral. - Know about the alternating series and its properties. - Gain knowledge for testing the convergence of series of positive terms.
2.	15UMAC32	Numerical Methods	- Give procedures for solving numerically different kinds of problems occurring in engineering and technology - Find solution of system of linear equations, roots of non-linear equations - Learn the concept of interpolation - Able to approximate the functions and to estimate the errors. - Use the numerical techniques to solve algebraic and differential equations - Develop skills in solving problems using numerical techniques.
3.	15UMAA31	Programming in C	- Understand the basic terminology used in computer programming - Write, compile and debug programs in C language. - Use different data types in a computer program. - Design programs involving decision structures, loops and functions. - Explain the difference between call by value and call by reference - Understand the dynamics of memory by the use of pointers. - Use different data structures and create/update basic data files.
4.	15UMAS31	Theory of Numbers	- Understand the basic knowledge of numbers and its types. - Introduce the notion of Euler's function . - Develop the skill about the criteria of divisibility of number by 3,9 and 11

			- Explain congruences and its properties. - Get in insight into divisibility using Fermat's Theorem and generalized Fermat's Theorem. - Learn about the characterization of prime numbers using Wilson's theorem.
5.	15UMAV31	Data Interpretation	- Able to independently read mathematical and statistical literature of various types, including survey articles, scholarly books, and online sources. - Communicate statistical ideas clearly in both oral and written form using appropriate statistical terminology. - Generate reports that show statistical expertise in writing and model implementation. - Methods to summarize a collection of data by describing what was observed using numbers or graphs. - Ability to deal with the collection, organization, presentation, computation and interpretation of data.
SEMESTER - IV			
1.	15UMAC41	Mechanics	- Able to construct free-body diagrams and to calculate the reactions necessary to ensure static equilibrium. - Understand the analysis of distributed loads. - Able to calculate centroids and moments of inertia. - Gain knowledge of kinetic energy and momentum methods for particles and systems of particles. - Acquire knowledge of the general principles of dynamics.
2.	15UMAC42	Graph Theory	- Understand the basic concepts of graphs - Able to present a graph by matrices. - Understand the properties of trees - Understand Eulerian and Hamiltonian graphs. - Apply the Planarity Algorithm - Demonstrate the usage of Euler's Formula

3.	15UMAA41	Object Oriented Programming with C++ and Visual Basic	- Explain the need and importance of OOP using C++. - Distinguish basic data types, custom input/output operators and illustrate class definition - Using member functions. - Apply concept of overloading, type conversion and virtual functions. - Demonstrate templates, use and handle exceptions. - Describe inheritance, polymorphism and concepts related to files. - Discuss the concept of pointers, make use of constructors and destructors themselves and manage a class' resources using dynamic memory allocation and de-allocation.
4.	15UMAO41	Trigonometry	- Able to use formulae for arc length and sector area in terms of radians. - Familiarize themselves with basic properties of sine, cosine and tangent functions. - Determine the six trigonometric function values for any angle in standard position - When the coordinates of a point on the terminal side are given. - Evaluate inverse trigonometric functions. - Learn about the hyperbolic functions. - Apply logarithms to the solution of problems encountered in mathematics and the sciences. - Apply trigonometric techniques as tools in the analysis of mathematical, physical, and scientific problems.
5.	15UMAO42	Fourier Series and Laplace Transform	- Gain knowledge of Even and odd Functions - Introduce the concept of half range Fourier series. - Gain an in-depth knowledge of the various aspects of cosine series and change of interval. - Inculcate the insight knowledge of Laplace Transforms and the conditions for its existence. - Demonstrate the idea of inverse Laplace

			Transforms - Find the inverse Laplace Transform of certain functions by the method of partial fractions. - Evaluate the ordinary differential equations with constant coefficients by using Laplace Transform. - Able to solve certain equations involving integrals by Laplace Transform.
6.	15UMAO43	Mathematical Modeling	- Familiarize themselves with the basic knowledge of mathematical modelling and its techniques. - Gain knowledge of Mathematical modelling through Geometry, Algebra and Calculus. - Learn about the limitations of Mathematical modelling. - Understand the idea of Mathematical modelling through Differential Equations. - Study about Linear Growth and non linear growth with Decay Models. - Gain an in-depth knowledge of Mathematical modelling in dynamics through ordinary differential equations - Study the concept of Models in terms of directed Graphs and signed Graphs - Develop the idea of Mathematical Modelling in terms of Unoriented Graphs.
			MESTER - V

1.	15UMAC51	Modern Algebra	- Understand the relationships between abstract algebraic structures with familiar numbers systems such as the integers and real numbers. - Learn the concepts of the relationships between operations satisfying various properties. - Learn the concepts and properties of various algebraic structures. - Use results from elementary group theory to solve contemporary problems - Demonstrate ability to think critically by interpreting theorems and relating results to problems in other mathematical disciplines - Learn the elementary theorems and proof techniques of group and ring theory - Apply the theorems, proof techniques and standard computations of group and ring theory to solve problems.
2.	15UMAC52	Real Analysis	- Learn the basic ingredients of reals and understand the properties of functions defined on the Real line. - Develop a sound knowledge and appreciation of the ideas and concepts related to metric spaces - Give a strong foundation to take up advanced level courses in analysis. - Construct proofs, counter arguments or counter examples in reals. - Construct the field axioms of the reals, covers, density, monotonicity, boundedness, - Demonstrate completeness, limits, continuity. - Describe and prove continuity conditions for real - Demonstrate compactness and its characterization. - Make the student a good background on basic real analysis.
3.	15UMAC53	Operations Research	- Identify and develop operational research models from the verbal description of the real System. - Understand the mathematical tools that are needed to solve optimisation problems. - Develop a report that describes the model and the

			solving technique, analyse the results and propose recommendations in language understandable to the decision-making processes. - Able to design new simple models, like: CPM, PERT ,etc to improve decision -making and develop critical thinking and objective analysis of decision problems. - Formulate simple reasoning, learning and optimization problems, in terms of the representations and methods presented. - Evaluate analytically the limitations of these algorithms, and assess tradeoffs between these algorithms. - Demonstrate the hand execution of basic reasoning and optimization algorithms on simple problems.
4.	15UMAC54	Mathematical Statistics I	- Gain knowledge in basic mathematical statistics. - Able to collect, organise, and represent data, and be able to recognise and describe relationships - Demonstrate the relevance and use of statistical tools for analysis and forecasting - Gain the basic knowledge of measures of dispersion like mean, median and mode. - Obtain a point estimate for the variance and standard deviation of the conditional distribution of the response variable given a value for the predictor. - Know about the concept of correlation and regression. - Construct a confidence interval for the slope of the regression line. - Gain an in-depth knowledge of the various aspects of curve fitting of curves. - Know about the concept of Index numbers. - Understand the concept of Attributes.
5.	15UMAO51	History of Mathematics	- Acquire knowledge of the history of mathematics. - Able to communicate mathematical ideas with others. - Know and demonstrate understanding of the

			concepts from the five branches of mathematics (number, algebra, geometry and trigonometry, statistics and probability, and discrete mathematics) - Use appropriate mathematical concepts and skills to solve problems in both familiar and unfamiliar situations including those in real-life contexts. - Understand and be able to articulate the differences between inductive and deductive reasoning.
6.	15UMAO52	Vector Calculus	- Gain knowledge about the dot product of vectors, lengths of vectors, and angles between vectors. - Evaluate line integrals of scalar functions or vector fields along curves. - Recognize conservative vector fields, and apply the fundamental theorem for line integrals of conservative vector fields. - Evaluate surface integrals; compute surface area. - Evaluate integrals over parametric surfaces. - Identify various quadric surfaces through their equations. - Apply the divergence theorem to give a physical interpretation of the divergence of a vector field. - Evaluate the velocity and acceleration of a particle moving along a space curve. Apply triple integrals to find volumes and center of mass.
7.	15UMAO53	Mathematical Methods in Social Sciences	- Understand the mathematical methods that are most widely used in economics, both from a formal, abstract perspective, and an intuitive perspective. - Know how to read, understand, and construct mathematical proofs, and appreciate their role in the derivation of mathematical concepts and structures. - Apply mathematical methods and techniques that are formulated in abstract settings to

			concrete economic applications. - Static (or equilibrium) analysis in which the economic unit (such as a household) or economic system (such as a market or the economy) is modeled as not changing.
8.	15UMAS51	Lattices and Boolean Algebra	- Able to recognize, identify, classify and describe the problems of set theory so that they can differentiate between functions and relations - Understand abstract algebra, posets, lattices, Boolean algebra. - Gain an the insight into the types of lattices and its properties. - Demonstrate the concepts of Boolean algebra. - Draw a Karnaugh map for a logic system with up to four inputs and use it to minimise the Boolean expression. - By studying mathematical logic, they will be able to learn to use logically valid forms of arguments.
9.	15UMAS52	Quantitative Aptitude I	- Able to apply quantitative reasoning and mathematical analysis methodologies to understand and solve problems. - Understanding the properties of proportion and its usage. - Able to add, subtract, multiply and divide whole numbers, decimal numbers and fractions. - Manipulate equations and formulas in order to solve for the desired variable. - Able to perform operations with surds and indices. - Determine the square roots, cube roots of positive whole numbers, decimals and common fractions.
SEMESTER - VI			
1.	15UMAC61	Linear Algebra	- Present basic concepts of vector spaces - Inculcate basic concepts of matrices and matrix algebra - Present methods of solving systems of linear equations

			- Demonstrate concepts of linear transformations - Learn about the span of a set and linear independence. - Demonstrate ability to work within vector spaces and to distil vector space properties. - Present methods of computing and using eigen values and eigenvectors. - Present the concept of and methods of computing determinants - Able to find the change-of-basis matrix with respect to two bases of a vector space
2.	15UMAC62	Complex Analysis	- Explain the fundamental concepts of complex analysis and their role in modern mathematics and applied contexts - Demonstrate accurate and efficient use of complex analysis techniques - Gain knowledge about the elementary transformation and bilinear transformation - Compute the fixed points of a bilinear transformation. - Understand the significance of differentiability for complex functions and be familiar with the Cauchy-Riemann equations; - Evaluate integrals along a path in the complex plane and understand the statement of Cauchy's Theorem - Compute the Taylor and Laurent expansions of simple functions, determining the nature of the singularities and calculating residues - Identify the isolated singularities of the function and determine whether they are removable, poles or essential. - Compute innermost Laurent Series at an isolated singularity and determine the residue. - Use the Residue theorem to compute complex line integral and real integrals.
3.	15UMAC63	Differential Equations and its Applications	- Understand some basic definitions and terminology associated with differential equations and their solutions

			- visualize the direction field associated with a first-order differential equation - Use analytical methods of solution by direct integration; separation of variables; and the integrating factor method. - identify a general method for constructing solutions to inhomogeneous linear constantcoefficient second-order equations - Show an awareness of initial and boundary conditions to obtain particular values of constants in the general solution of second-order differential equations. - Determine solutions to first order linear differential equations. - Determine solutions to first order exact differential equations. - Determine solutions to second order linear homogeneous differential equations with constant coefficients. - Convert separable and homogeneous equations to exact differential equations by integrating factors. - Classify the differential equations with respect to their order and linearity.
4.	15UMAC64	Mathematical Statistics II	- Learn the concepts and methods of probability and distribution theory. - Gain wide knowledge in probability which plays a main role in solving real life problems. - Frame distribution functions and its types. - Learn the applications of Binomial and Poisson distributions. - Apply the standard discrete probability distribution to different real life situations. - Determine a probability distribution of random variable (one or two dimensional) in the given situation - Able to understand the significance of the connection between statistics and probability and their applicability to the real world

			- Gain knowledge about the multivariate distributions.
5.	15UMAO61	Fuzzy sets and Logic	- Explain the fundamental concepts of fuzzy set. - Demonstrate the concept of α-cut and its properties. - Learn about Linguistic variables using fuzzy number. - Compute the fuzzy number using the arithmetic operations. - Able to know the relation of fuzzy set. - Get the inference from conditional, quantified proposition. - Understand the basic applications of fuzzy in engineering - Get insight into interpersonal communication as an application of fuzzy.
6.	15UMAO62	Stochastic Processes	- Apply the specialised knowledge in probability theory and random processes to solve practical problems. - Gain advanced and integrated understanding of the fundamentals of and interrelationship between discrete and continuous random variables and between deterministic and stochastic processes. - Analyse the performance in terms of probabilities and distributions achieved by the determined solutions. - Demonstrate essential stochastic modelling tools like Markov chains . - Evaluate the n -step transition probability. - Learn about renewal theory. - Demonstrate the transition function - Know about the Birth - Death and Yule process - Study the properties of Poission process and their characterization. - Understanding of the relationship between the purpose of a model and the appropriate level of complexity and accuracy.
7.	15UMAO63	Optimization	- Understand and identify the need of using

		Techniques	Operations Research techniques. - Find optimum solution for real life problems. - Gain the knowledge of transportation problem using many techniques. - Find optimum solution using assignment method. - Develop the ability to solve the transhipment problems. - Inculcate the basic knowledge of sequencing problems. - Enhance the ideas for solving the problems in crew scheduling. - Describe about the concept of Dynamic programming. - Make a wide knowledge in Dynamic programming for solving real life problems.
8.	15UMAS61	Quantitative Aptitude II	- Able to apply quantitative reasoning and mathematical analysis methodologies to understand and solve problems. - Examine how to calculate using Simple and Compound formulas. - Able to demonstrate an understanding of the difference between area and perimeter. - Apply general mathematical models to solve a variety of problems. - Apply the properties of logarithms to write logarithmic expressions in different forms, and evaluate the resulting expressions. - Able to solve applications involving permutations and combinations. - Understanding event, outcome, trial, simple event, sample space and calculate the probability that an event will occur.
9.	15UMAV61	Astronomy	- Apply scientific reasoning to future astronomical discoveries to understand their validity as well as to everyday situations. - Demonstrate an understanding that science is based upon observations of the universe and how that is used to understand some basic

			phenomenon of our world. - Develop analytical skills and the ability to solve problems. - Achieve a good understanding of physical laws and principles. - Gain experience with measurement techniques and equipment, and develop the ability to assess uncertainties and assumptions. - Understand the scale of items within the Universe - Appreciate the wide variety of objects contained in the Universe - Understand the relative sizes of the planets within the Solar System - Calculate how long it takes for light to reach the Earth from the Sun. - Describe the solar nebula model.
SEMESTER - I			
1.	$\begin{aligned} & \text { 15UPHA11 } \\ & \text { /15UCHA11 } \end{aligned}$	Mathematics-I	- Impart knowledge in basic mathematical statistics. - Inculcate the basic knowledge of measures of dispersion like mean, median and mode. - Know about the concept of correlation and regression. - Gain in-sight knowledge in the various aspects of fitting curves. - Understand the concept of Index numbers. - Understand and identify the need of using Operations Research. - Find optimum solution of real life problems. - Gain knowledge of linear programming technique using graphical solution method. - Find optimum solution using assignment method. - Gain knowledge of transportation problem using many techniques.
SEMESTER - II			
1.	$\begin{gathered} \text { 15UPHA21 } \\ \text { /15UCHA21 } \end{gathered}$	Mathematics-II	- Attain the basic knowledge about equations and to solve equations in different Methods.

			- Develop an analytic thinking in the concept of Transformation of equations. - Demonstrate reciprocal equations - Understand the concept of differentiation. - Introduction about the higher derivatives. - Endew with an in-depth knowledge of partial differentiation using Euler's theorem. - Equip with the basic knowledge of integration. - Expose to the various techniques like integration by parts and integration using reduction formula. - Develop the skill of solving differential equations. - Learn about exact differential equations and solving equations using integrating factor.
SEMESTER - I			
1.	$\begin{gathered} \text { 15UCSA11 } \\ \text { /15UCAA11 } \\ \text { /15UITA11 } \end{gathered}$	Mathematical Foundation	- Understand the basic knowledge of Mathematical logics. - Explain about the conditional statements and well formed formulas. - Demonstrate the idea of sets and operations on sets. - Understand the functions and relations which are defined on a set. - Gain knowledge about matrices and its basic operations. - Evaluate the inverse and rank of a matrix. - Present the idea of graph theory and basic definitions which are related to graphs. - Represent the graph as a matrix. - Learn about the operations on graphs. - Get acquainted with some special graphs.
SEMESTER - II			
1.	$\begin{gathered} \text { 15UCSA21 } \\ \text { /15UCAA21 } \\ \text { /15UITA21 } \end{gathered}$	Operations Research	- Present the history, nature and scope of operation research. - Demonstrate the main Characteristics of Operations Research - Inculcate the insight knowledge of Linear programming problem.

			- Evaluate the solution of linear programming problem using Graphical method. - Understand the computational procedure of simplex method. - Find the solution of Linear programming problem using simplex method, Big M Method and Two phase method. - Find optimum solution using assignment method. - Learn the application of assignment problem in real life situations. - Study the computational procedure of Transportation problem. - Gain knowledge of transportation problem using many techniques.
SEMESTER - III			
1.	15UCSA31	Fundamentals of statistics	- Understand the meaning, definition, nature, importance and limitations of statistics. - Able to create, read, and interpret graphs, charts, histograms, and diagrams. - Understand and use the basic measure of central tendency. - Demonstrate the relevance and use of statistical tools for analysis and forecasting. - Learn about the measures of dispersion. - Inculcate knowledge about Correlation and Regression - Understand the concept of probability. - Evaluate the addition and multiplication theorem.
SEMESTER - IV			
1.	15UCSA41	Computer Oriented Numerical Methods	- Introduce the learners to the methods of solving equations. - Enable students to use numerical techniques to tackle problems that are not analytically solvable. - Inculcate the basic knowledge of algebraic and transcendental equations. - Introduce the concept of simultaneous linear

			equations. - Find the solutions of simultaneous linear equations using Gauss elimination, Gauss Jordan and Gauss seidal methods. - Introduce the concept of Interpolation which will be used to predict the data. - Understand the concept of numerical differentiation. - Find the derivatives using numerical formulae. - Use various techniques like trapezoidal rule, simpson's rule and weddle's rule in solving s numerical integration problems. - Learn about the solution of differential equations using different techniques like taylor's series method and Runge Kutta method.

