Department of Mathematics

B.Sc. Mathematics

| S.No. | Course Code | Course Name | Course Outcomes |
| :---: | :---: | :---: | :--- | (

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
		Course I : Integral Calculus and Fourier Series	gamma functions CO2[K3]: use the integration techniques to integrate double integrals over a region and triple integrals over a three dimensional region CO3[K3]: calculate the area of a region using double integrals and the volume of a solid using triple integrals CO4[K4]: investigate the reduction formula for integrals that contain transcendental functions CO5[K5]: determine the appropriate Fourier series expansion of bounded integrable function
SEMESTER- II			
4.	21UMAC21	Core Course - III : Classical Algebra	CO1[K1]: outline the equivalence relation, divisibility in Z , congruences and reciprocal equations CO2[K2]: explain the properties of divisibility, congruences and the types of reciprocal equations CO3[K3]: solve linear congruences and cubic, biquadratic equations $\mathbf{C O 4}[\mathbf{K 4}]$: investigate the types of reciprocal equations and examine the natureand position of roots of polynomial equations CO5[K5]: determine the nature and position of roots of polynomial equations
5.	21UMAC22	Core Course - IV : Summation of Series and Trigonometry	CO1[K1]: state the binomial series representation of functions, exponential series and logarithmic series, definition of hyperbolic functions CO2 [K2]: identify the general term in series expansion of functions and characteristic property of hyperbolic functions CO3[K3]:use trigonometric formulae to sum the trigonometric series and to

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			findthe expression for $\sin n \theta, \cos n \theta, \sin ^{n} \theta, \cos ^{n} \theta$ CO4[K4]: investigate the methods of summation of trigonometric series CO5[K5]:determine the appropriate method to find the sum of trigonometricseries
6.	21UMAS21	Skill Enhancement Course - II: Data Interpretation	CO1[K2]: describe the method of collecting data, characteristics of data, the typeof classification of data in terms of statistical survey CO2[K3]: draw inference from data represented using bar graphs, pie charts,line graphs CO3[K4]: interpret data diagrammatically and graphically CO4[K5]: evaluate the method of collecting data and representation of data CO5[K6]: prepare questionnaires for collection of data and arrange data according to classification
SEMESTER- III			
7.	21UMAC31	Core Course - V : Sequences and Series	CO1[K2]: explain the fundamental concepts of sequences and series of real numbers CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of sequences and series of real numbers CO3[K3]: apply the standard tests to test the convergence of series of real numbers CO4[K4]: investigate the limits of sequences of real numbers CO5[K5]: determine the behaviour of monotonic sequences
8.	21UMAC32	Core Course - VI : Mathematical Statistics	CO1[K2]: explain the basic statistical methods and techniques in data analysis CO2[K3]: apply the statistical methods and techniques to find numerical

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			measures of quantitative data CO3[K3]: calculate mathematical expectation and generating function of random variables CO4[K4]: analyze the properties of distribution functions of random variables C05[K5]: determine the curve that best fit the given data
9.	21UMAN31	Non Major Elective Course - I : Fundamentals of Mathematics	CO1[K1]: state the elementary mathematical facts CO2[K2]: explain the method of simplifying algebraic and rational expressions and the basic concepts related to sets, logarithms CO3[K3]: solve linear equations and problems on sets, permutations and combinations CO4[K4]: investigate the general term of Arithmetic and Geometric progression CO5[K4]: analyze different forms of a set and various set theoretic operations
10.	21UMAS31	Skill Enhancement Course - III: Astronomy	C01[K1]: describe astronomical objects and phenomenon CO2[K2]: summarize the identities of spherical trigonometry CO3[K3]: calculate various measures in horizon CO4[K4]: examine the relationships between the trigonometric functions of sides and angles of a spherical triangle CO5 [K4]: analyze the occurrence of astronomical twilight
SEMESTER-IV			
11.	21UMAC41	Core Course - VII : Mechanics	CO1[K2]: explain the fundamental concepts and principles of Mechanics CO2[K3]: apply the principles and methods to find the resultant of forces on bodies concerned in statics CO3[K4]: examine the velocity and acceleration of moving particles in

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			various forms of motion CO4[K4]: investigate the motion of a particle under the action of central forces CO5 [K5]: evaluate the kinematic quantities of projectile motion
12.	21UMAC42	Core Course - VIII : Sampling Theory	CO1[K2]: explain the important elements of sampling and the different sampling methods CO2[K3]: apply sampling techniques to draw inferences about a population in statistical investigation CO3[K3]: apply the statistical tool "Analysis of Variance" for testing the significance at different level of significance CO4[K4]: analyze the various methods for obtaining estimation of population parameters CO5[K5]: determine the optimum test statistic in solving Testing of Hypothesis Problems
13.	21UMAM41	Self-paced Learning (Swayam Course) Basic Calculus 1 and 2	C01[K1]: identify the background and the key words in Basic Calculus 1 and 2 CO2[K2]: demonstrate independent and self-paced learning for clear understanding of the concept CO3[K3]: develop computer and communication skills to broaden theirknowledge in the course CO4[K3]: use high quality reading resources, communication tools and technology to send assignments and to take up test CO5[K4]: analyse critically and apply technical skills to comprehend the ideas prescribed

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

| S.No. | Course Code | Course Name | Course Outcomes |
| :---: | :---: | :---: | :--- | (

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

| S.No. | Course Code | Course Name | Course Outcomes |
| :---: | :---: | :---: | :--- | (

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			dominance property to find the optimum strategy and value of thegame CO4[K4]: analyse the characteristics of Poisson queueing models CO5[K5]: evaluate the optimality of solutions of optimization problems
20.	21UMAC54	Core Course - XII : Differential Equations and Laplace Transforms	CO1[K2]: explain the methods of solving ordinary and partial differential equations and the techniques of the Laplace transform CO2[K3]: solve the ordinary differential equations using various methods CO3[K3]: apply Laplace transform techniques to solve ordinary differentialequations CO4[K4]: analyze the method of solving simultaneous differential equations CO5[K5]: evaluate the complete integrals of partial differential equations of thefirst order
21.	21UMA051	Major Elective Course - I : Numerical Methods	CO1[K2]: explain the methods of solving the problems in science numerically CO2[K3]: apply numerical methods to obtain approximate solutions of algebraic, transcendental and differential equations CO3[K3]: solve simultaneous linear algebraic equations using numericalmethods CO4[K4]: examine the method of interpolation to estimate the unknown data values when they are unequally spaced CO5[K5]: evaluate the eigen values and eigenvectors of a matrix

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
22.	21UMA052	Major Elective Course - I : Calculus of Finite Differences	C01[K2]: explain the concepts of difference operators and their properties CO2[K3]: solve the linear difference equations and to find numerical solution ofordinary differential equations CO3[K3]: apply numerical techniques to compute numerical differentiation andintegration of given functions CO4[K4]: analyze the relations connecting the difference operators CO5[K5]: determine the method of interpolation to estimate the unknown datavalue between known data values when they are equally spaced
23.	21UMA053	Major Elective Course - I : Probability Theory and Theory of Attributes	CO1[K2]: explain the basic concepts of probability and association of attributes CO2[K3]: calculate probability of various events using theory of probability CO3[K3]: calculate coefficient of association between attributes $\mathbf{C O 4}[\mathrm{K4}]$: analyze the independence and association of attributes CO5[K5]: determine the consistency of attributes
24.	21UMA054	Major Elective Course - II : Discrete Mathematics	CO1[K2]: explain the basic concepts related to functions, semigroups, monoids, recurrence relation and logic CO2[K3]: compute the inverse of functions and the composition of two or more functions CO3[K3]: solve the recurrence relations using the generating function CO4[K4]: analyze the axioms and properties of the algebraic structures semigroup and monoids

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			CO5[K5]: assess the truth values of statements with reference to propositional logic
25.	21UMA055	Major Elective Course - II : Integral Transforms	CO1[K2]: explain the general form and properties of various integral transforms CO2[K3]: find the Fourier, Hilbert and Z-Transform of given functions CO3[K3]: solve the boundary value and initial value problems using the integral transforms CO4[K4]: analyze the properties of integral transforms CO5[K5]: determine the appropriate integral transform that simplifies the computational techniques considerably
26.	21UMA056	Major Elective Course - II : Coding Theory	CO1[K2]: explain the fundamental concepts of coding theory, types of error andcontrol code techniques CO2[K3]: apply the concepts of perfect codes, hamming codes, extended codes and golay codes for error detection and correction CO3[K3]: compute a generator matrix, a parity check matrix and generator polynomial for various codes CO4[K4]: analyze the theoretical principles of source coding and the notion of various decoding techniques C05[K5]: determine the basis for the linear code
SEMESTER- VI			
27.	21UMAC61	Core Course - XIII : Linear Algebra	CO1[K2]: explain the basic concepts and general theory of vector spaces, inner product spaces and matrices CO2[K3]: apply the abstract concepts to produce proofs of results that arise

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			inthe context of linear algebra CO3[K3]: compute the inverse of a matrix using Cayley - Hamilton theorem and find eigen values and eigen vectors of a matrix CO4[K4]: analyze the properties of vectors in an inner product space CO5[K5]: determine the basis of a vector space
28.	21UMAC62	Core Course - XIV : Complex Analysis	CO1[K2]: explain the basic concepts and properties of functions of a complex variable CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of complex analysis CO3[K3]: compute the value of the integral, residues and poles for complex valued functions CO4[K4]: analyse the properties of bilinear transformations and series expansion of analytic functions in the region of convergence CO5[K5]: determine the continuity, differentiability, analyticity of complex functions
29.	21UMAC63	Core Course - XV : Graph Theory	CO1[K2]: explain the basic concepts of graph theory CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of graph theory CO3[K3]: provide matrix representations, the chromatic index, chromatic polynomial of a graph and demonstrate various operations on graphs CO4[K4]: examine the characterizations of various graphs CO5[K5]: evaluate the realisation graph of a degree sequence and determinethe Eulerian / Hamiltonian graphs

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

| S.No. | Course Code | Course Name | Course Outcomes |
| :---: | :---: | :---: | :--- | (

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
			involved in inventory control CO4[K4]: analyze the different models of sequencing and inventory control problems CO5[K5]: evaluate the optimality of solutions of transportation and assignment problems
33.	21UMA062	Major Elective Course - III : Project Network Techniques	C01[K2]: explain the network techniques, network methods of project management and the various element of a network CO2[K3]: compute event times, activity times and floats for each activity of thenetwork CO3[K3]: apply the network rules to draw the network diagram of a project whose activities inter-relationships are stated CO4[K4]: analyse the kinds of time estimates in PERT system CO5[K5]: determine the critical path of the given network
34.	21UMA063	Major Elective Course-III : Mathematical Programming Techniques	C01[K2]: explain the techniques and the computational procedure for solving mathematical programming problems CO2[K3]: solve integer programming problems and non-linear programming problems by various methods CO3[K3]: apply dynamic programming and geometric programming approach to find solution of practical problems CO4[K4]: analyse the different methods of dynamic programming and geometric programming approach CO5[K5]: evaluate the optimality of solutions of integer programming problems and non-linear programming problems
35.	21UMAS6P	Skill Enhancement	C01[K2]: explain the script, syntax, commands, functions in Octave

SRI KALISWARI COLLEGE (Autonomous)

B.SC. MATHEMATICS

Amiliated to Madural Kamara) University, Madural
Re-accredited with ' A^{\prime} grade ($3^{\prime \prime} \mathrm{cyclo}$) by NAAC with CGPA 3.11
A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

S.No.	Course Code	Course Name	Course Outcomes
		Course - VI: Practical Computational Methods in Octave	programming CO2[K3]: apply the built - in math functions and extensive function libraries towrite syntax of octave programming CO3[K3]: solve linear and nonlinear problems numerically using octave programming CO4[K4]: analyze the matrix - based syntax and functions for matrix operationsin Octave programming CO5[K5]: assess the compatibility of syntax and functions in Octaveprogramming
36.	21UMAE61	Comprehensive Examination	C01[K1]: identify the various tools in techniques in Mathematics CO2[K2]: interpret mathematical definitions and statements CO3[K2]: explain the mathematical facts and concepts CO4[K3]: articulate the mathematical problems and the methods of solving it CO5[K4]: examine the results of mathematical problems

Courses Offered to the Departments

S.No	Course Code	Course Name	Course Outcomes
SEMESTER-I			
1.	21UPHA11/21UCHA11	Allied Course - I: Mathematics - I	CO1[K2]: express the relation between roots and coefficients of polynomial equations CO2[K2]: calculate the derivative, integral, Laplace transform of functions CO3[K3]: solve algebraic and transcendental equations numerically CO4[K4]: investigate homogeneous function and Euler's theorem CO5[K5]: determine the appropriate Fourier series expansion for functions
2.	$\begin{gathered} \text { 21UCSA11/21UITA11 } \\ \text { /21UCAA11 } \end{gathered}$	Allied Course-I: Mathematical Foundations	C01[K1]: define the discrete objects in the context of mathematical structures for computer science and applications CO2[K2]: recognize the properties of set operations and types of functions CO3[K3]: calculate the rank, inverse matrix of a matrix CO4[K4]: analyze the truth values of statements with reference to propositional logic C05[K5]: determine the appropriate algorithm to solve graph optimization problems

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

SEMESTER- II			
3.	21UPHA21/21UCHA21	Allied Course - II: Mathematics - II	C01[K2]: indicate the binomial series representation of functions and the exponential series CO2[K2]: explain gradient of a scalar valued function, divergence and curl of a vector valued function and its properties, rank of a matrix CO3[K3]: compute inverse of a matrix using Cayley-Hamilton theorem, eigen values and eigen vectors of a square matrix CO4[K4]: appraise equivalent definitions of a group, properties of a group CO5[K5]: determine the mathematical function that has the best fit to a series of data points
4.	$\begin{gathered} \text { 21UCSA21/21UITA21 } \\ \text { /21UCAA21 } \end{gathered}$	Allied Course - II: Operations Research	C01[K1]: state the scope, phases of operations Research and the classification of optimization models CO2[K2]: explain the computational algorithms for various optimization methods CO3[K3]: compute optimum solution of the linear programming, transportation, and assignment problems CO4[K4]: examine the solutions of the optimization problems CO5[K6]: formulate the mathematical expression of the linear programming model from the study of the situation and derive solutions to the problem
SEMESTER- III			

SRI KALISWARI COLLEGE (Autonomous)

Amiliated to Madurai Kamars) University, Madural
Re-accredited with ' A ' grade ($3^{\prime \prime}$ cyclo) by NAAC with CGPA 3.11
A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

5.	$21 U C S A 31$

CO1[K2]: explain the methods of solving the problems in science numerically
CO2[K3]: apply numerical methods to obtain approximate solutions of algebraic, transcendental and differential equations
Numerical Methods For Scientific Computation

CO3[K3]: apply numerical techniques to compute numerical differentiation and integration of given functions
CO4[K4]: analyze error arising in numerical computation of solutions to mathematical and applied problems
CO5[K5]: determine the method of interpolation to estimate the unknown data value between known data values

