A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

Department of Mathematics

B.Sc. Mathematics

S.No.	Course Code	Course Name	Course Outcomes
			SEMESTER- I
1.	21UMAC11	Core Course - I : Differential Calculus	CO1[K2]: describe tangent, normal, pedal equation of plane curves with the help of derivative CO2[K2]: exemplify curvature, radius of curvature, evolute of plane curves and envelope of a family of plane curves encountered in the study ofcalculus CO3[K3]: sketch a plane curve given its equation without computing the large number of points required for a detailed plot CO4[K4]: investigate homogeneous function and Euler's theorem CO5[K5]: determine the asymptotes of the given function
2.	21UMAC12	Core Course - II : Analytical Geometry- 3D	CO1[K1]: describe three – dimensional Cartesian co-ordinates and geometricobjects line, plane, sphere on the co-ordinate system CO2[K2]: explain the properties of direction cosines of a line CO3[K3]: manipulate the different forms of equations of lines, planes, spheres CO4[K4]: differentiate the different forms of equations of lines, planes, spheres CO5[K5]: determine the appropriate form of equation of lines, planes, Spheres
3.	21UMAS11	Skill Enhancement	CO1[K2]: recognize the properties of double and triple integrals, beta and

S.No.	Course Code	Course Name	Course Outcomes
		Course I : Integral Calculus and Fourier Series	gamma functions CO2[K3]: use the integration techniques to integrate double integrals over a region and triple integrals over a three dimensional region CO3[K3]: calculate the area of a region using double integrals and the volume of a solid using triple integrals CO4[K4]: investigate the reduction formula for integrals that contain transcendental functions CO5[K5]: determine the appropriate Fourier series expansion of bounded integrable function
			SEMESTER- II
4.	21UMAC21	Core Course - III : Classical Algebra	CO1[K1]: outline the equivalence relation, divisibility in Z, congruences and reciprocal equations CO2[K2]: explain the properties of divisibility, congruences and the types of reciprocal equations CO3[K3]: solve linear congruences and cubic, biquadratic equations CO4[K4]: investigate the types of reciprocal equations and examine the natureand position of roots of polynomial equations CO5[K5]: determine the nature and position of roots of polynomial equations
5.	21UMAC22	Core Course - IV : Summation of Series and Trigonometry	CO1[K1]: state the binomial series representation of functions,

S.No.	Course Code	Course Name	Course Outcomes
			find the expression for $\sin n\theta$, $\cos n\theta$, $\sin^n\theta$, $\cos^n\theta$ CO4[K4]: investigate the methods of summation of trigonometric series CO5[K5]: determine the appropriate method to find the sum of trigonometric series
6.	21UMAS21	Skill Enhancement Course - II: Data Interpretation	 CO1[K2]: describe the method of collecting data, characteristics of data, the typeof classification of data in terms of statistical survey CO2[K3]: draw inference from data represented using bar graphs, pie charts, line graphs CO3[K4]: interpret data diagrammatically and graphically CO4[K5]: evaluate the method of collecting data and representation of data CO5[K6]: prepare questionnaires for collection of data and arrange data according to classification
			SEMESTER- III
7.	21UMAC31	Core Course - V : Sequences and Series	CO1[K2]: explain the fundamental concepts of sequences and series of real numbers CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of sequences and series of real numbers CO3[K3]: apply the standard tests to test the convergence of series of real numbers CO4[K4]: investigate the limits of sequences of real numbers CO5[K5]: determine the behaviour of monotonic sequences
8.	21UMAC32	Core Course - VI : Mathematical Statistics	CO1[K2]: explain the basic statistical methods and techniques in data analysis CO2[K3]: apply the statistical methods and techniques to find numerical

S.No.	Course Code	Course Name	Course Outcomes
			measures of quantitative data
			CO3[K3]: calculate mathematical expectation and generating function of
			random variables
			CO4[K4]: analyze the properties of distribution functions of random variables
			CO5[K5]: determine the curve that best fit the given data
			CO1[K1]: state the elementary mathematical facts
			CO2[K2]: explain the method of simplifying algebraic and rational
		Non Major Elective	expressions and the basic concepts related to sets, logarithms
9.	21UMAN31	Course - I :	CO3[K3]: solve linear equations and problems on sets, permutations and
<i>)</i> .	ZIUMANSI	Fundamentals of	combinations
		Mathematics	CO4[K4]: investigate the general term of Arithmetic and Geometric
			progression
			CO5[K4]: analyze different forms of a set and various set theoretic operations
	211IMAC21	Skill Enhancement Course - III: Astronomy	CO1[K1]: describe astronomical objects and phenomenon
			CO2[K2]: summarize the identities of spherical trigonometry
10.			CO3[K3]: calculate various measures in horizon
10.	ZIOMASSI		CO4[K4]: examine the relationships between the trigonometric
			functions of sides and angles of a spherical triangle
			CO5 [K4]: analyze the occurrence of astronomical twilight
			SEMESTER- IV
			CO1[K2]: explain the fundamental concepts and principles of
		CAC41 Core Course - VII : Mechanics	Mechanics
11.	21UMAC41		CO2[K3]: apply the principles and methods to find the resultant of
			forces on bodies concerned in statics
			CO3[K4]: examine the velocity and acceleration of moving particles in

S.No.	Course Code	Course Name	Course Outcomes
			various forms of motion CO4[K4]: investigate the motion of a particle under the action of central forces CO5[K5]: evaluate the kinematic quantities of projectile motion
12.	21UMAC42	Core Course - VIII : Sampling Theory	CO1[K2]: explain the important elements of sampling and the different sampling methods CO2[K3]: apply sampling techniques to draw inferences about a population in statistical investigation CO3[K3]: apply the statistical tool "Analysis of Variance" for testing the significance at different level of significance CO4[K4]: analyze the various methods for obtaining estimation of population parameters CO5[K5]: determine the optimum test statistic in solving Testing of Hypothesis Problems
13.	21UMAM41	Self-paced Learning (Swayam Course) Basic Calculus 1 and 2	CO1[K1]: identify the background and the key words in Basic Calculus 1 and 2 CO2[K2]: demonstrate independent and self-paced learning for clear understanding of the concept CO3[K3]: develop computer and communication skills to broaden theirknowledge in the course CO4[K3]: use high quality reading resources, communication tools and technology to send assignments and to take up test CO5[K4]: analyse critically and apply technical skills to comprehend the ideas prescribed

S.No.	Course Code	Course Name	Course Outcomes	
14.	21UMAM42	Self-paced Learning (Swayam Course) Multivariable Calculus	CO1[K1]: identify the background and the key words in Multivariable calculus CO2[K2]: demonstrate independent and self-paced learning for clear understanding of the concept CO3[K3]: develop computer and communication skills to broaden their knowledge in the course CO4[K3]: use high quality reading resources, communication tools and technology to send assignments and to take up test CO5[K4]: analyse critically and apply technical skills to comprehend the ideas prescribed	
15.	21UMAN41	Non Major Elective Course - II: Introduction to Numerical Computations	CO1[K1]: state the elementary concepts of numerical methods CO2[K2]: explain the methods for solving mathematical problems numerically CO3[K3]: apply numerical methods to solve algebraic, transcendental and simultaneous equations CO4[K4]: examine the method of finding the curve of best fit for the given data CO5[K4]: analyze the method of interpolation for finding the unknown data value between known data values	
16.	21UMAS41	Skill Enhancement Course - IV: Statistical Distributions	CO1[K2]: explain the basic concepts of discrete probability distributions and continuous probability distributions CO2[K3]: compute the various parameters of probability distributions CO3[K3]: derive the moment generating function and cumulant generating function of probability distributions CO4[K4]: interpret the recurrence relation for parameters of distributions CO5[K5]: determine the limiting form of distributions of random variables	
	SEMESTER- V			

S.No.	Course Code	Course Name	Course Outcomes
17.	21UMAC51	Core Course - IX : Abstract Algebra	CO1[K2]: explain the fundamental concepts of groups and rings CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of groups and rings CO3[K3]: apply the composition operation of permutation group to compute inverse of a permutation and express a permutation as a product of disjoint cycles / transpositions CO4[K4]: analyze the properties of groups, subgroups, rings, subrings CO5[K5]: determine the group/ring axioms on a set and the isomorphism ofgroups / rings
18.	21UMAC52	Core Course - X : Real Analysis	CO1[K2]: explain the basic concepts of real analysis and proof techniques in analysis CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of real analysis CO3[K4]: analyze the behavior of absolutely convergent and conditionally convergent series CO4[K4]: analyze the properties connectedness, completeness and compactnessin a metric space CO5[K5]: determine continuity, discontinuity and uniform continuity of thefunctions on the real line
19.	21UMAC53	Core Course - XI : Operations Research	CO1[K2]: explain the solution procedure for solving Linear Programming Problems and the basic concepts related to theory of games and queues CO2[K3]: solve the linear programming problems using various methods CO3[K3]: apply the maximin - minimax principle, graphical method and

S.No.	Course Code	Course Name	Course Outcomes
			dominance property to find the optimum strategy and value of thegame CO4[K4]: analyse the characteristics of Poisson queueing models CO5[K5]: evaluate the optimality of solutions of optimization problems
20.	21UMAC54	Core Course - XII : Differential Equations and Laplace Transforms	CO1[K2]: explain the methods of solving ordinary and partial differential equations and the techniques of the Laplace transform CO2[K3]: solve the ordinary differential equations using various methods CO3[K3]: apply Laplace transform techniques to solve ordinary differential equations CO4[K4]: analyze the method of solving simultaneous differential equations CO5[K5]: evaluate the complete integrals of partial differential equations of thefirst order
21.	21UMA051	Major Elective Course - I : Numerical Methods	CO1[K2]: explain the methods of solving the problems in science numerically CO2[K3]: apply numerical methods to obtain approximate solutions of algebraic, transcendental and differential equations CO3[K3]: solve simultaneous linear algebraic equations using numericalmethods CO4[K4]: examine the method of interpolation to estimate the unknown data values when they are unequally spaced CO5[K5]: evaluate the eigen values and eigenvectors of a matrix

S.No.	Course Code	Course Name	Course Outcomes
22.	21UMAO52	Major Elective Course - I : Calculus of Finite Differences	CO1[K2]: explain the concepts of difference operators and their properties CO2[K3]: solve the linear difference equations and to find numerical solution ofordinary differential equations CO3[K3]: apply numerical techniques to compute numerical differentiation andintegration of given functions CO4[K4]: analyze the relations connecting the difference operators CO5[K5]: determine the method of interpolation to estimate the unknown datavalue between known data values when they are equally spaced
23.	21UMA053	Major Elective Course - I : Probability Theory and Theory of Attributes	CO1[K2]: explain the basic concepts of probability and association of attributes CO2[K3]: calculate probability of various events using theory of probability CO3[K3]: calculate coefficient of association between attributes CO4[K4]: analyze the independence and association of attributes CO5[K5]: determine the consistency of attributes
24.	21UMAO54	Major Elective Course - II : Discrete Mathematics	CO1[K2]: explain the basic concepts related to functions, semigroups, monoids, recurrence relation and logic CO2[K3]: compute the inverse of functions and the composition of two or more functions CO3[K3]: solve the recurrence relations using the generating function CO4[K4]: analyze the axioms and properties of the algebraic structures semigroup and monoids

S.No.	Course Code	Course Name	Course Outcomes
			CO5[K5]: assess the truth values of statements with reference to propositional logic
25.	21UMA055	Major Elective Course - II : Integral Transforms	CO1[K2]: explain the general form and properties of various integral transforms CO2[K3]: find the Fourier, Hilbert and Z-Transform of given functions CO3[K3]: solve the boundary value and initial value problems using the integral transforms CO4[K4]: analyze the properties of integral transforms CO5[K5]: determine the appropriate integral transform that simplifies the computational techniques considerably
26.	21UMA056	Major Elective Course - II : Coding Theory	CO1[K2]: explain the fundamental concepts of coding theory, types of error and control code techniques CO2[K3]: apply the concepts of perfect codes, hamming codes, extended codes and golay codes for error detection and correction CO3[K3]: compute a generator matrix, a parity check matrix and generator polynomial for various codes CO4[K4]: analyze the theoretical principles of source coding and the notion of various decoding techniques CO5[K5]: determine the basis for the linear code
			SEMESTER- VI
27.	21UMAC61	Core Course - XIII : Linear Algebra	CO1[K2]: explain the basic concepts and general theory of vector spaces, inner product spaces and matrices CO2[K3]: apply the abstract concepts to produce proofs of results that arise

SRI KALISWARI COLLEGE (AUTONOMOUS)

Affiliated to Madurai Kamaraj University, Madurai Re-accredited with 'A' grade (3"cycle) by NAAC with CGPA 3.11

S.No.	Course Code	Course Name	Course Outcomes
			inthe context of linear algebra CO3[K3]: compute the inverse of a matrix using Cayley – Hamilton theorem and find eigen values and eigen vectors of a matrix CO4[K4]: analyze the properties of vectors in an inner product space CO5[K5]: determine the basis of a vector space
28.	21UMAC62	Core Course - XIV : Complex Analysis	CO1[K2]: explain the basic concepts and properties of functions of a complex variable CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of complex analysis CO3[K3]: compute the value of the integral, residues and poles for complex valued functions CO4[K4]: analyse the properties of bilinear transformations and series expansion of analytic functions in the region of convergence CO5[K5]: determine the continuity, differentiability, analyticity of complex functions
29.	21UMAC63	Core Course - XV : Graph Theory	CO1[K2]: explain the basic concepts of graph theory CO2[K3]: apply the abstract concepts to produce proofs of results that arise inthe context of graph theory CO3[K3]: provide matrix representations, the chromatic index, chromatic polynomial of a graph and demonstrate various operations on graphs CO4[K4]: examine the characterizations of various graphs CO5[K5]: evaluate the realisation graph of a degree sequence and determinethe Eulerian / Hamiltonian graphs

S.No.	Course Code	Course Name	Course Outcomes
30.	21UMAC64	Core Course - XVI : Vector Calculus	CO1[K2]: explain the basic concepts of vector differentiation and vector integration CO2[K3]: compute the curl, divergence and line integral of vector valued functions CO3[K3]: calculate the curvature and torsion of the given curve CO4[K4]: analyze the properties of curl and divergence CO5[K5]: evaluate Green's, Gauss's Divergence and Stoke's theorem for the vector valued functions
31.	21UMAJ61	Core Course - XVII : Project	CO1 [K2]: express their views with apt illustrations and critical support CO2 [K3]: organize the views and format them into a research paper CO3 [K4]: analyze the views which take about various approaches to the definition terms CO4 [K5]: evaluate the findings of the study CO5 [K6]: compile the Documentation as per the latest Research Methodology
32.	21UMAO61	Major Elective Course - III : Resource Management Techniques	CO1[K2]: explain the basic concepts and solution procedure related to Transportation problem, Assignment problem, Sequencing problem and Inventory control problem CO2[K3]: solve the Transportation problem, Assignment problem and Sequencing problem for optimum solution CO3[K3]: compute the optimum value of the various costs and factors that are

S.No.	Course Code	Course Name	Course Outcomes
			involved in inventory control CO4[K4]: analyze the different models of sequencing and inventory control problems CO5[K5]:evaluate the optimality of solutions of transportation and assignment problems
33.	21UMA062	Major Elective Course - III : Project Network Techniques	 CO1[K2]: explain the network techniques, network methods of project management and the various element of a network CO2[K3]: compute event times, activity times and floats for each activity of thenetwork CO3[K3]: apply the network rules to draw the network diagram of a project whose activities inter-relationships are stated CO4[K4]: analyse the kinds of time estimates in PERT system CO5[K5]: determine the critical path of the given network
34.	21UMA063	Major Elective Course - III : Mathematical Programming Techniques	CO1[K2]: explain the techniques and the computational procedure for solving mathematical programming problems CO2[K3]: solve integer programming problems and non-linear programming problems by various methods CO3[K3]: apply dynamic programming and geometric programming approach to find solution of practical problems CO4[K4]: analyse the different methods of dynamic programming and geometric programming approach CO5[K5]: evaluate the optimality of solutions of integer programming problems and non-linear programming problems
35.	21UMAS6P	Skill Enhancement	CO1[K2]: explain the script, syntax, commands, functions in Octave

S.No.	Course Code	Course Name	Course Outcomes
		Course - VI: Practical – Computational Methods in Octave	programming CO2[K3]: apply the built – in math functions and extensive function libraries towrite syntax of octave programming CO3[K3]: solve linear and nonlinear problems numerically using octave programming CO4[K4]: analyze the matrix – based syntax and functions for matrix operations octave programming CO5[K5]: assess the compatibility of syntax and functions in Octave programming
36.	21UMAE61	Comprehensive Examination	CO1[K1]: identify the various tools in techniques in Mathematics CO2[K2]: interpret mathematical definitions and statements CO3[K2]: explain the mathematical facts and concepts CO4[K3]: articulate the mathematical problems and the methods of solving it CO5[K4]: examine the results of mathematical problems

A.Meenakshipuram, Anaikuttam Post, SIVAKASI - 626 130. Tamilnadu

Courses Offered to the Departments

S.No	Course Code	Course Name	Course Outcomes		
	SEMESTER- I				
1.	21UPHA11/21UCHA11	Allied Course - I: Mathematics - I	CO1[K2]: express the relation between roots and coefficients of polynomial equations CO2[K2]: calculate the derivative, integral, Laplace transform of functions CO3[K3]: solve algebraic and transcendental equations numerically CO4[K4]: investigate homogeneous function and Euler's theorem CO5[K5]: determine the appropriate Fourier series expansion for functions		
2.	21UCSA11/21UITA11 /21UCAA11	Allied Course-I: Mathematical Foundations	CO1[K1]: define the discrete objects in the context of mathematical structures for computer science and applications CO2[K2]: recognize the properties of set operations and types of functions CO3[K3]: calculate the rank, inverse matrix of a matrix CO4[K4]: analyze the truth values of statements with reference to propositional logic CO5[K5]: determine the appropriate algorithm to solve graph optimization problems		

SEMESTER- II			
3.	21UPHA21/21UCHA21	Allied Course - II: Mathematics - II	CO1[K2]: indicate the binomial series representation of functions and the exponential series CO2[K2]: explain gradient of a scalar valued function, divergence and curl of a vector valued function and its properties, rank of a matrix CO3[K3]: compute inverse of a matrix using Cayley-Hamilton theorem, eigen values and eigen vectors of a square matrix CO4[K4]: appraise equivalent definitions of a group, properties of a group CO5[K5]: determine the mathematical function that has the best fit to a series of data points
4.	21UCSA21/21UITA21 /21UCAA21	Allied Course - II: Operations Research	CO1[K1]: state the scope, phases of operations Research and the classification of optimization models CO2[K2]: explain the computational algorithms for various optimization methods CO3[K3]: compute optimum solution of the linear programming, transportation, and assignment problems CO4[K4]: examine the solutions of the optimization problems CO5[K6]: formulate the mathematical expression of the linear programming model from the study of the situation and derive solutions to the problem
SEMESTER- III			

			CO1[K2]: explain the methods of solving the problems in science
5.		Allied Course - III: Numerical Methods For Scientific Computation	numerically
			CO2[K3]: apply numerical methods to obtain approximate solutions of
			algebraic, transcendental and differential equations
	241100424		CO3[K3]: apply numerical techniques to compute numerical
	21UCSA31		differentiation and integration of given functions
			CO4[K4]: analyze error arising in numerical computation of solutions to
			mathematical and applied problems
			CO5[K5]: determine the method of interpolation to estimate the
			unknown data value between known data values