# SRI KALISWARI COLLEGE, SIVAKASI

( An Autonomous Institution, Affliated to Madurai Kamaraj University,

Reaccredited with 'A' Grade by NAAC with CGPA 3.30)

# **DEPARTMENT OF MATHEMATICS**



# **Programme Scheme of Examinations and Syllabi**

# (with effect from June, 2015)

# **Research Programme – M.Phil. (Mathematics)**

#### Programme Outcome (PO) for M.Phil Programmes

#### Knowledge

PO 1: Research Oriented knowledge and updated acumen.

PO 2: Application of research on emerging recent trends.

#### Skills

- PO 1: Contribution to research culture through publications.
- PO 2: Ability to take up Minor/ Major research projects

#### Attitude

- PO 1: Technological Competency for global needs.
- PO 2: Competency to address latest socio economic issues.

#### **Programme Specific Outcome**

- Enables the students to obtain advanced knowledge in a specialized field.
- Engages in life-long learning through self-study, continuing education or doctoral level studies.
- Work as mathematical professionals, or are qualified for a training as scientific researcher.

#### Sri Kaliswari College (Autonomous)-Sivakasi Department of Mathematics Choice Base Credit System- Curriculum Pattern Research Programme – M.Phil - [Mathematics] 2015-2016

| Course code      | Course Name                                   | Hours | Credits |  |  |
|------------------|-----------------------------------------------|-------|---------|--|--|
| Semester I       |                                               |       |         |  |  |
| 15HMAC11         | <b>Core</b> – <b>I</b> : Research Methodology | 6     | 5       |  |  |
| 15HMAC12         | <b>Core – II :</b> Commutative Algebra        | 6     | 5       |  |  |
| Major Elective I |                                               | 6     | 5       |  |  |
| 15HMAO11         | 1. Algorithmic Graph Theory                   |       |         |  |  |
| 15HMAO12         | 2. Advanced Analysis                          |       |         |  |  |
| 15HMAO13         | 3. Fuzzy Topology                             |       |         |  |  |
| 15HMAO14         | 4. Stochastic Processes                       |       |         |  |  |
| 15HMAO15         | 5. Advanced Complex Analysis                  |       |         |  |  |
|                  | TOTAL                                         | 18    | 15      |  |  |
| Semester II      |                                               |       |         |  |  |
| 15HMAJ21         | Project                                       | -     | 5       |  |  |

| Semester | Ι  | II | Total |
|----------|----|----|-------|
| Credits  | 15 | 5  | 20    |

Core–I : Research Methodology – 15HMAC11 Duration :90 Hrs Credits : 5

#### Aim and Objectives:

- To empower scholars with Research Methodology.
- To initiate students into the realm of Mathematical research
- To study the use of Latex for preparing project report
- To know the preliminaries of domination in Graph Theory
- To know the basic ideas of Algebraic Topology

#### **Course Outcome :**

- Present basic idea of objectives of Research and its types.
- Familiar with the basic concepts of Research Methods versus methodology.
- Gain knowledge of Survey of Literature, Journals, Periodicals, Patents and Abstracts.
- Demonstrate concepts of Serials and Monographs.
- Learn about the idea of publishing research articles in mathematics.
- Demonstrate ability to work within Thesis Layout.
- Know about Editors in latex and Texnic center.
- Present the idea of Converting an article to a presentation.
- Study about Elementary properties of dominating sets in graphs.
- Inculcate the insight knowledge of Algebraic Topology

#### Unit I

Meaning of Research – Objectives of Research – Motivation of Research – Types of Research – Research Methods versus methodology – Research Process – Technique involved in defining the problem – Survey of Literature – Journals – Periodicals – Patents – Abstracts – Reviews

#### Unit II

#### (18 Hrs)

(18 Hrs)

Treatises – Serials – Monographs – Science citation index – Publishing research articles in Mathematics – Thesis Layout – Preliminaries – Title Pages – Certificates – Declaration –

Abstracts – Preface – Acknowledgments – Table of contents – List of Tables – Figures and symbols – Text of the thesis.

#### Unit III

Sample files – Editing cycle – The key board – your first note-lines too wide-more text features – Editors in latex – Latex editor – Texnic center – Bokama tex – Texcad – A note with math – Errors in math – Building blocks of a formula – Displayed formulas – The anatomy of an article – An article template using latex – Converting an article to a presentation.

#### Unit IV

Elementary properties of dominating sets in graphs – Bounds on the Domination number – Bounds in terms of order – Bounds in terms of order, Degree and Packing – Bounds in terms of order and Size – Bounds in terms of Degree, Diameter and Girth – Bounds in terms of Independence and Covering.

#### Unit V

Algebraic Topology – Homotopy of Paths – The Fundamental Group.

#### **Text Books:**

- 1. Abdul Rahim , "Thesis writing a manual for Researchers,", New Age International Ltd., New Delhi, 1996.
- 2. Kothari. C.R , "Research Methodology (Methods and Techniques),", Wiley Eastern Ltd., New Delhi, 2002.
- 3. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, "Fundamentals of Domination in Graphs", 1998
- 4. Waliker H.B., Acharya B.D. and Sampathkumar E., "Recent Development in the theory of Domination in Graphs", 1979.
- 5. George Gratzer, "More Math into Latex (4<sup>th</sup> edition)
- 6. James R. Munkres, "Topology", Prentice Hall of India Private Limited, New Delhi, Second Edition

#### (18 Hrs)

## (18 Hrs)

#### Core –II : Commutative Algebra – 15 HMAC12

Duration: 90 Hours Credits : 5

#### Aim and Objectives:

- To study the operations on ideals
- To know the Tensor product of modules and of Algebras
- To study about Noetherian rings and Artin rings

#### **Course Outcome :**

- Inculcate the basic knowledge of Rings and Ideals.
- Learn the concept of Zero divisors, Nilpotent elements, Prime ideals and Maximal ideals.
- Explain the concept of Nil radical and Jacobson radical.
- Develop the idea of Modules and module homomorphisms.
- Gain knowledge of Sub modules and quotient modules.
- Understand Tensor product of modules and its exactness properties.
- Understand the concept of modules of fractions and its local properties.
- Learn about first and second uniqueness theorems.
- Gain an in-depth knowledge of integral domains and valuation rings.
- Introduce new algebraic structures namely Noetherian rings and Artin rings.

#### Unit I

#### (18 Hrs)

Rings and ring homomorphisms – Ideals – Quotient rings – Zero divisors – Nilpotent elements – Units – Prime ideals and Mamximal ideals - Nilradical and Jacobson radical – Operations on ideals - Extension and Contraction.

#### Unit II

#### (18 Hrs)

Modules and module homomorphisms – Submodules and quotient modules – Operations on submodules – Direct sum and product – Finitely generated modules – Exact sequences –

Tensor product of modules - Restriction and extension of scalars - Exactness properties of the Tensor product – Algebras – Tensor product of Algebras.

#### **Unit III**

Rings and modules of fractions - Local properties - Extended and contracted ideals in rings of fractions - Primary decomposition - First and second uniqueness theorems.

### Unit IV

Integral dependence – The going-up theorem – Integrally closed-Integral domains – The going-down theorem - Valuation rings - Chain conditions - Composition series of modules.

### Unit V

Noetherian rings - Hilbert's basis theorem - Primary decomposition in Noetherian rings -Artin rings – Structure theorem for Artin rings.

### **Text Book:**

Atiyah, M.F and Macdonald, I.G, "Introduction to commutative Algebra (1969)", Addison Wesley Publishing Co., New Delhi.

#### (18 Hrs)

#### (18 Hrs)

# Major Elective - I : Algorithmic Graph theory – 15 HMAO41Duration: 90 HrsCredits : 5

#### Aim and Objectives:

- To study algorithms in Graph Theory
- To introduce characteristics of Hamiltonian Graphs and Eulerian Graphs

#### **Course Outcome :**

- Provide a formal introduction to the concept of Algorithmic complexity.
- Introduce the concept of NP.
- Learn about the Sorting algorithms and Greedy algorithms
- Gain knowledge of trees and its properties.
- Explain the tool for finding Blocks.
- Evaluate the Distance in Graphs and weighted Graphs.
- Gain an insight knowledge into the concept of matchings.
- Get the idea of maximum matchings in general Graphs and in bipartite graphs also.
- Introduce the concept of Hamiltonian Graphs and its Characterizations.
- Gain the knowledge about Eulerian Graphs and its Characterizations.

#### Unit I

#### (18 Hrs)

(18 Hrs)

Algorithmic complexity – Search algorithms – Sorting algorithms – Introducing NP – Completeness – Greedy algorithms – Representing Graphs in Computer.

#### Unit II

Properties of trees – Rooted Trees – Depth first search – A tool for finding Blocks – Breadth first search – The minimum spanning tree problem.

#### Unit III

Distance in Graphs - Distance in weighted Graphs – The centre and median of a Graph – Activity digraphs and critical paths – Error correcting codes.

#### Unit IV

#### (18 Hrs)

An introduction to matching – Maximum Matchings in bipartite Graphs - Maximum Matchings in general Graphs - Factorizations

#### Unit V

#### (18 Hrs)

An introduction to Hamiltonian Graphs – Characterizations of Hamiltonian Graphs – An introduction to Eulerian Graphs – Characterizing Eulerian Graphs

#### **Text Book:**

Chartrand, G. and Oellerman, O.R, "Applied and Algorithmic Graph Theory, 1993", MC-Graw Hill Inc., Newyork.

#### Major Elective – I : Advanced Analysis – 15HMAO12 Duration : 90 Hrs Credits : 5

#### Aim and Objectives:

- To study separation properties of a topological vector space
- To know the basic properties of spectra
- To know about bounded operators

#### **Course Outcome :**

- Explain the fundamental concepts of advanced analysis such as topology and Lebesgue integration and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced analysis techniques.
- Apply problem-solving using advanced analysis techniques applied to diverse situations in physics, engineering and other mathematical contexts.
- Prove important theorems, such as the Intermediate Value Theorem, Rolle's Theorem and Mean Value Theorem, and will continue the study of power series and their convergence.
- Apply limiting properties to describe and prove continuity and differentiability conditions for real and complex functions.
- Able to solve unseen mathematical problems in real analysis.
- Gain knowledge about the interdependency of different areas of mathematics, as well as connections between mathematics and other disciplines.

#### Unit I

#### (18 Hrs)

Topological vector space – Types of topological vector spaces – Separation properties – Linear mappings – Finite dimensional spaces – Metrization – Boundedness and continuity – Seminorms and local convexity.

Unit II

#### Unit III

Ideals and homomorphisms – Wiener's lemma – Gelfand transforms – Involutions – Gelfand-Naimark theorem - Applications to Noncommutative Algebras.

#### Unit IV

Basic facts – Bounded operators – A commutativity theorem – Resolutions of the Identity – The spectral theorem.

#### Unit V

Unbounded operators – Graphs and symmetric operators – The cayley transform – The deficiency indices.

### **Text Book:**

W.Rudin, "Functional Analysis", Tata MC-Graw Hill Co. Ltd., New Delhi, 2007

### ,

(18 Hrs)

(18 Hrs)

Major Elective – I : Fuzzy Topology – 15HMAO13

Duration: 90 Hours Credits : 5

#### Aim and Objectives:

- To introduce Fuzzy relations
- To know Fuzzy Topological spaces
- To study separation axioms in Fuzzy Topological spaces

#### **Course Outcome:**

- Gain knowledge about the concept of subsets of Euclidean space are homeomorphic by constructing a homeomorphism.
- Use the definitions of the subspace topology, the product topology and the quotient topology,
- Understand the use and proof of their universal properties and be familiar with standard examples such as topological surfaces
- Understand whether or not a topological space is Hausdorff.
- Familiarize the basic properties of Hausdorff spaces and their proofs;
- Determine whether a collection of subsets of a set determines a topology;
- Understand whether or not a subset of a topological space is compact and be familiar with the basic properties of compact subsets and their proofs.
- Understand of the basic mathematical elements of the theory of fuzzy sets.
- Gain knowledge of important parts of fuzzy set theory, which will enable them to create effective mathematical models.

#### Unit I

#### (18 Hrs)

Fuzzy set Theory - Sets and subsets – Fuzzy subsets – Basic operations on Fuzzy subsets – Graphical representation of some terms – concept of Uncertainty – Support of a Fuzzy set and r-cut or r-level – Types of Fuzzy sets – Different types of Fuzzy sets – Further operations on Fuzzy sets – t-norms and t-conorms or s-norms – The extension principle and application – Oprations for type 2 Fuzzy sets – Algebraic operations with Fuzzy numbers and arithmetic.

#### (18 Hrs)

(18 Hrs)

Fuzzy relations and Fuzzy graphs – Fuzzy relations – Projects of a Fuzzy relation - Fuzzy graph – Fuzzy network.

#### Unit III

Fuzzy Topological spaces - Fuzzy Topology - Intuitionistic Fuzzy Topological spaces -Induced Fuzzy Topological spaces – Lower semi continuous function – Induced Fuzzy Topological spaces.

#### Unit IV

Connectedness in Fuzzy Topological space - Fuzzy separated sets - Fuzzy connectedness -Some stronger and weaker form of Fuzzy connectedness.

#### Unit V

Separation axioms – Fuzzy Separation axiom- Unification of Fuzzy Separation axiom.

#### **Text Book:**

Anjan Mukherjee & S. Bhattacharya Halder, "Fuzzy Set and Fuzzy Topology", Narosa Publishing House, New Delhi.

### Unit II

#### (18 Hrs)

Major Elective – I : Stochastic Processes

Duration : 90 Hrs Credits : 5

### Aim and Objectives:

- To enrich the knowledge of applied probability and applied stochastic processes.
- To introduce non negative integral valued random variables and generating functions.
- To know about Markov chain.

#### **Course Outcome :**

- Apply the specialised knowledge in probability theory and random processes to solve practical problems.
- Gain advanced and integrated understanding of the fundamentals of and interrelationship between discrete and continuous random variables and between deterministic and stochastic processes.
- Analyse the performance in terms of probabilities and distributions achieved by the determined solutions.
- Demonstrate essential stochastic modelling tools like Markov chains.
- Evaluate the n-step transition probability.
- Learn about renewal theory.
- Demonstrate the transition function
- Know about the Birth Death and Yule process
- Study the properties of Poission process and their characterization.
- Understand the relationship between the purpose of a model and the appropriate level of complexity and accuracy.

Unit I

Probability Distributions - Generating functions – Laplace transforms – Laplace (Stieltjes) transform of a probability distribution or of a random variable - Stochastic processes -Introduction - Specification of stochastic processes - Stationary processes.

Markov Chains - Definition and examples - Higher transition probabilities - Generalisation of independent Bernoulli trials: Sequence of chain-dependent trials - Classification of states and chains - Determination of higher transition probabilities - Stability of a Markov system -Graph Theoretic approach - Markov chain with denumerable number of states.

Markov Processes with Discrete State Space : Poisson process and its extension - Poisson Process - Poisson Process and Related Distributions - Generalisations of Poisson Process -Birth and Death Process – Markov Processes with Discrete State Space (Continuous Time Markov Chains) - Erlang process.

### **Unit IV**

Markov Processes with continuous State Space - Brownian motion - Wiener process -Differential equations for a Wiener process - Kolmogorov equations - First passage Time Distribution for wiener process.

Unit V

Stochastic processes in queueing and reliability – Non-birth and death queueing processes: Bulk queues - Network of Markovian queueing system - Non-Markovian queueing models -The model GI/M/1 - The model M/G(a,b)/1

### **Text Book:**

J.Medhi, "Stochastic processes", New age international (P) limited, publishers, Second edition, Reprint 2004.

# **Unit III**

Unit II

#### (18 Hrs)

#### (18 Hrs)

(18 Hrs)

#### Major Elective – I : Advanced Complex Analysis – 15HMAO15

Duration : 90 Hrs Credits : 5

#### Aim and Objectives:

- To know explicit representations of elementary transcendental functions and other specific functions
- To handle more difficult case of multiply connected regions

#### **Course Outcome :**

- Explain the fundamental concepts of complex analysis and their role in modern mathematics and applied contexts
- Demonstrate accurate and efficient use of complex analysis techniques.
- Introduce the concept of analytic function, rational function etc.,
- Gain an insight into the sequence of analytic functions using Weierstrass theorem.
- Learn about Riemann mapping theorem in the complex plane.
- Evaluate the conformal mappings of doubly connected regions and regions of finite connectivity
- Get the idea of simply connectedness and its equivalent conditions
- Understand the significance of analytic automorphisms of regions in the complex plane
- Present the idea of Univalent functions defined on the open unit disc.
- Explain the brief history of the Bieberbach conjecture and its solution

#### Unit I

#### (18 Hrs)

Introduction- Weierstrass theorem for sequence of analytic functions - Riemann mapping theorem

#### Unit II

(18 Hrs)

Conformal mappings of doubly connected regions and regions of finite connectivity

| Unit III                                                      | ( <b>18 Hrs</b> )                        |
|---------------------------------------------------------------|------------------------------------------|
| Simply connectedness and Equivalent conditions                |                                          |
| Unit IV                                                       | (18 Hrs)                                 |
| Analytic automorphisms of regions in the complex plane        |                                          |
| Unit V                                                        | ( <b>18 Hrs</b> )                        |
| Univalent functions defined on the open unit disc - A brief l | nistory of the Bieberbach conjecture and |

its solution

**Text Book :** V.Karunakaran, "Complex Analysis", Narosa Publications, New Delhi, 2<sup>nd</sup> Edition.