Sri Kaliswari College (Autonomous), Sivakasi

(Affliated to Madurai Kamaraj University,

Re-Accredited with 'A' grade (CGPA 3.30) by NAAC)

Programme Scheme, Scheme of Examinations and Syllabi

(For those who join from June 2018 and afterwards)

Department of Mathematics

Research Programme – M.Phil

Curriculum Design and Development Cell

Sri Kaliswari College (Autonomous), Sivakasi Department of Mathematics M.Phil. Mathematics (Semester) – (2018-2019) Objectives, Outcomes, Regulations

Programme Objectives:

- > To initiate students into the realm of Mathematical research.
- > To prepare the students for better employment of research in Mathematics.

Programme Outcomes:

Knowledge

PO 1 : Research Oriented knowledge and updated acumen.

PO 2 : Application of research on emerging recent trends.

Skills

PO 1 : Contribution to research culture through publications.

PO 2 : Ability to take up Minor/Major research projects.

Attitude

PO 1: Technological Competency for global needs.

PO 2 :Competency to address latest socio economic issues.

Programme Specific Outcomes:

- Enables the students to obtain advanced knowledge in a specialized field.
- Engages in life-long learning through self-study, continuing education or doctoral level studies.
- Work as mathematical professionals, or are qualified for a training as scientific researcher.

Duration of the Programme: One year (Equivalent to two semesters) **Eligibility:**

Candidate should have passed M.Sc., Mathematics or any other degree accepted by the Syndicate of the Madurai Kamaraj University as its equivalent.

Medium of Instruction	: English
Age Limit	: No age limit

Transitory Permission:

Students joined from 2018 to 2020 may be permitted to write their examinations in this pattern up to April 2023.

Sri Kaliswari College (Autonomous), Sivakasi **Choice Based Credit System Department of Mathematics** Research Programme – M.Phil. 2018 - 2019 Scheme of Examination/ Question Paper Pattern

Theory Examination

The Internal and External marks should be allotted in the ratio 40:60.

Internal Marks:

i. Test	: 25 Marks (Average of two tests)
ii. Assignment	: 5 Marks (Average of two)
iii. Seminar / Group Dis	cussion/
Peer-Team Teaching	
	otal : 40 Marks
External Question Paper Patt	ern:
Time: 3 Hours	Max .Marks:60
The question paper for external	exam will have two parts.
Part	$(5 \times 6 = 30)$
(Choosing either (a) or (b) patter	ern – Alternative Choice - One Question from each unit.)
Question No. 1. (a) or	r 1. (b) – From Unit I
2. (a) o	r 2. (b) – From Unit II
3. (a) o	r 3. (b) – From Unit III
4. (a) o	r 4. (b) – From Unit IV
	r 5. (b) – From Unit V
Part	-B (3 x 10 = 30)
Answer any three out of five. (C	One Question from each unit)
Question No. $6 - 10$.	
6 - From	Unit I
7 - From	
8 – From	
9 – From	
10 – Fror	n Unit V

Summative exam questions are to be according to the following pattern

•	Knowledge based	-	30 %
•	Understanding	-	50 %
•	Higher Objective (Applications and Skill based)	-	20 %

Project

Internal	- 75 Marks
External	- 75 Marks
Viva – Voce	- 50 Marks
Total	- 200 Marks

Sri Kaliswari College (Autonomous), Sivakasi Department of Mathematics Choice Base Credit System- Curriculum Structure Research Programme – M.Phil Mathematics 2018-2019

Courses	Sem I	Sem II	Total Credits
Core	12(10)	-	10
Courses			
Elective	6(5)	-	5
Courses			
Project	-	- (5)	5
Total	18	-	20
hours(per			
week)			

Sri Kaliswari College (Autonomous), Sivakasi Department of Mathematics Choice Base Credit System- Curriculum Pattern Research Programme – M.Phil Mathematics 2018 - 2019

Semester	Course Code	Course Name	Hours	Credits
Ι	18HMAC11	Core Course – I : Research Methodology	6	5
	18HMAC12	Core Course – II : Commutative Algebra	6	5
	Major Elective	Course:	6	5
	18HMAO11	1. Advanced Analysis		
	18HMAO12	2. Fuzzy Topology		
	18HMAO13	3. Advanced Complex Analysis		
II	18HMAJ21	Project	-	5

Semester	Ι	II	Total
Credits	15	5	20

Sri Kaliswari College (Autonomous), Sivakasi Department of Mathematics Research Programme - M. Phil Semester I (2018 – 2019)

Core Course – I: Research Methodology (18HMAC11)

(For those who join from June 2018 and afterwards)

Credits : 5

Hours/Week : 6

Duration : 90 hrs

Course Objectives:

- To initiate students into the realm of Mathematical research.
- To study the use of Latex for preparing project report.
- To know the preliminaries of domination in Graph Theory.
- To know the basic ideas of Algebraic Topology.

Course Outcomes:

- 1. Ability to critically evaluate current research and propose possible alternate directions for further work.
- 2. Ability to develop hypothesis and methodology for research.
- 3. Ability to comprehend and deal with complex research issues in order to communicate their scientific results clearly for peer review.
- 4. A capability to contribute to research and development work.
- 5. Able to prepare presentation using LaTeX and write mathematical documents via LaTeX.
- 6. Understand the concepts of domination, independence and covering in graphs.
- 7. Understand the concept of homotopy and know its basic properties

UNIT I

(18 hrs)

Int. Marks : 40

Ext. Marks : 60

Max. Marks: 100

Research Methodology: An Intoduction: Meaning of Research – Objectives of Research – Motivation of Research – Types of Research – Research Methods versus Methodology – Research Process. **Defining the Research Problem:** Technique involved in defining the Problem – Survey of Literature – Journals – Periodicals – Patents – Abstracts – Reviews.

UNIT II

Treatises – Serials – Monographs – Science Citation Index – Publishing Research Articles in Mathematics. **Thesis Layout:** Preliminaries – Title Page – Certificates – Declaration – Abstracts – Preface / Acknowledgments – Table of Contents – List of Tables – List of Figures and Symbols – Text of the Thesis.

UNIT III

(18 hrs)

(18 hrs)

Your LATEX: Sample Files – Editing Cycle. Typing Text: The Key Board – Your first note – Lines too wide – More Text Features – Editors in Latex – Latex Editor – Texnic Center – Bokama Tex – Texcad. Typing math: A Note with Math – Errors in Math – Building Blocks of a Formula – Displayed Formulas. Your first Article and Presentation: The Anatomy of an Article – An Article Template – On using Latex – Converting an Article to a Presentation. UNIT IV (18 hrs)

Introduction – Dominating Queens – Dominating sets in Graphs – Sets of Representatives – An Introduction to NP-Completeness – NP-Completeness of the Domination Problem. **Bounds on the Domination Number:** Bounds in Terms of Order – Bounds in terms of Order, Degree and Packing – Bounds in terms of Order and Size – Bounds in terms of Degree, Diameter and Girth – Bounds in terms of Independence and Covering.

UNIT V

(18 hrs)

The Fundamental Group: Homotopy of Paths – The Fundamental Group.

Text Books:

- 1. Kothari. C.R, "Research Methodology (Methods and Techniques)", New Age International (P) Ltd., Publishers, New Delhi, 2006.
- F.Abdul Rahim, "Thesis Writing A Manual for Researchers", New Age International (P) Ltd., Publishers, New Delhi, 1996.
- 3. George Gratzer, "More Math into Latex", Vol. I, Spinger Science + Business Media, 4th edition, 2007.
- 4. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, "Fundamentals of Domination in Graphs Vol I", Marcel Dekker, INC., New York, 1998.
- 5. James R. Munkres, "Topology (Second Edition)", Prentice Hall of India Private Limited, New Delhi, 2000.

Unit	Text Book No.	Chapter	Section	Page No.
T	1	1	-	1-4, 7,8, 10-20
Ι		2	-	27-29
II	2	1	-	4-7
	3	1	1.2, 1.3	4-5
III		2	2.1-2.4	7-15
		3	3.1-3.4	17-33
		4	4.1-4.4	35-56
IV	4	1	1.1-1.3, 1.11,1.12	15-21, 30-36
		2	2.1-2.5	41-60
V	5	9	51, 52	321-334

Reference Books:

- 1. Dr. Bindrawan Lal, "Research Methodology", ABD Publishers, Jaipur, 2002.
- 2. Waliker H.B., Acharya B.D. and Sampathkumar E., "Recent Developments in the theory of Domination in Graphs and Its Applications", New Katra Allababad.
- 3. Gray Chartrand, Ping Zhang, "Introduction to Graph Theory", McGraw Hill Education (India) Private Limited, New Delhi, 2015.
- 4. Sheldon and W. Davis, "Topology", Tata McGraw Hill Publishing Company Limited, New Delhi, 2006.

Sri Kaliswari College (Autonomous), Sivakasi **Department of Mathematics Research Programme - M. Phil** Semester I (2018 - 2019)Core Course – II: Commutative Algebra (18HMAC12)

(For those who join from June 2018 and afterwards)

Credits :5 Int. Marks : 40 Hours/Week: 6 Ext. Marks : 60 Duration Max. Marks: 100 : 90 hrs

Course Objectives:

- To study the operations on ideals.
- To know the Tensor product of modules and of Algebras.
- To study about Noetherian rings and Artin rings.

Course Outcomes:

- 1. Provide a common generalization of the primes of arithmetic and the points of geometry.
- 2. Gain knowledge in prime ideal which is the central notion of Commutative Algebra.
- 3. Learn about projective modules and its elementary properties.
- 4. Demonstrate localization and some of its applications to projective modules.
- 5. Develop knowledge on integral extensions which includes the results such as going-up theorem and going-down theorem.
- 6. Study the basic properties of Noetherian rings and Artin rings.
- 7. Present basic results on Commutative Algebra necessary for elementary Algebraic Geometry.

UNIT I

(18 hrs)

Rings and Ideals: Rings and Ring Homomorphisms – Ideals – Quotient Rings – Zero Divisors - Nilpotent Elements - Units - Prime Ideals and Maximal Ideals - Nilradical and Jacobson Radical - Operations on Ideals - Extension and Contraction. **UNIT II** (18 hrs)

Modules: Modules and Module Homomorphisms - Submodules and Quotient Modules -Operations on Submodules - Direct Sum and Product - Finitely Generated Modules - Exact Sequences – Tensor Product of Modules – Restriction and Extension of Scalars – Exactness Properties of the Tensor Product – Algebras – Tensor Product of Algebras. **UNIT III**

(18 hrs)

Rings and Modules of Fractions: Local Properties - Extended and Contracted Ideals in Rings of Fractions. **Primary Decomposition:** First and Second Uniqueness theorems.

UNIT IV

Integral Dependence and Valuations: Integral Dependence – The Going-up Theorem – Integrally Closed Integral Domains - The Going-down Theorem - Valuation Rings. Chain Conditions: Composition Series of Modules. UNIT V

(18 hrs)

Noetherian Rings: Hilbert's Basis Theorem – Primary Decomposition in Noetherian Rings. Artin Rings: Structure Theorem for Artin Rings.

Text Book:

M.F. Atiyah and I.G Macdonald, "Introduction to Commutative Algebra", Addison Wesley Publishing Company, New Delhi.

Unit	Chapter	Page No.
Ι	1	1 - 10
II	2	17 - 31
III	3	36 - 43
111	4	50 - 54
IV	5	59 - 67
1 V	6	74 - 78
v	7	80 - 84
v	8	89 - 91

Reference Books:

- 1. Balwant Singh, "Basic Commutative Algebra", Cambridge University Press India Pvt. Ltd., New Delhi, 2013.
- 2. N.S. Gopalakrishnan, "Commutative Algebra", Oxonian Press Pvt. Ltd., New Delhi.

(18 hrs)

Sri Kaliswari College (Autonomous), Sivakasi **Department of Mathematics Research Programme – M.Phil** Semester I (2018 - 2019)

Major Elective Course: Advanced Analysis (18HMAO11) (For those who join from June 2018 and afterwards)

Credits : 5 Hours/Week: 6 **Duration** : 90 hrs **Course Objectives:**

Int.Marks : 40 Ext.Marks : 60 Max.Marks:100

- To study separation properties of topological vector spaces.
- To know the basic properties of spectra.
- To know about bounded operators.

Course Outcomes:

- 1. Understand the concept of continuity and boundedness of linear maps.
- 2. Inculcate an insight into Banach algebras.
- 3. Acquire knowledge about the group of invertible elements.
- 4. Demonstrate the main results on commutative Banach algebras.
- 5. Analyze the applications of noncommutative algebras.
- 6. Develop a sound knowledge and appreciation of the ideas and concepts related to bounded operators on a Hilbert space.
- 7. Demonstrate the concept of the Cayley transform.

UNIT I

(18 hrs)

Topological Vector Spaces: Topological Vector Spaces - Types of Topological Vector Spaces – Separation Properties – Linear Mappings – Finite Dimensional Spaces – Metrization – Boundedness and Continuity – Seminorms and Local Convexity. (18 hrs)

UNIT II

Banach Algebras: Introduction - Complex Homomorphisms - Basic Properties of Spectra – Gelfand Mazur Theorem – The Group of Invertible Elements – Lomonosov's Invariant Subspace Theorem.

UNIT III

Commutative Banach Algebras: Ideals and Homomorphisms -Homomorphisms and Quotient Algebras - Wiener's Lemma - Gelfand Transforms - Involutions - Gelfand-Naimark Theorem – Applications to Noncommutative Algebras. **UNIT IV**

Bounded Operators on a Hilbert Space: Basic Facts - Bounded Operators -Commutativity Theorem - Resolutions of the Identity - The Spectral Theorem.

(18 hrs)

(18 hrs)

Α

UNIT V

(18 hrs)

Unbounded Operators: Introduction – Graphs and Symmetric Operators – The Cayley Transform – The Deficiency Indices.

Text Book:

Walter Rudin, "Functional Analysis", McGraw Hill Education (India) Private Limited, New Delhi, Second Edition, 2013.

Unit	Chapter	Section	Page No.
Ι	1	1.6 – 1.39	7 - 30
II	10	10.1 -10.20,	245 - 258,
		10.34, 10.35	267-271
III	11	11.1 - 11.29	275 - 296
IV	12	12.1 - 12.23	306 - 325
V	13	13.1 - 13.21	347 - 360

<u>Reference Books</u>:

- 1. Balmohan V Limaye, "Functional Analysis", New Age International (P) Limited, Publishers, New Delhi, Third Edition, 2017.
- 2. G. F. Simmons, "Introduction to Topology and Modern Analysis", Tata McGraw Hill Publishing Company Limited, New Delhi, 2007.

Sri Kaliswari College (Autonomous), Sivakasi Department of Mathematics Research Programme - M. Phil Semester I (2018 – 2019)

Major Elective Course: Fuzzy Topology (18HMAO12) (For those who join from June 2018 and afterwards)

Credits: 5Int. Marks: 40Hours/WeekExt. Marks: 60Duration: 90 hrsMax. Marks: 100

Course Objectives:

- To study about Fuzzy relations
- To know Fuzzy Topological spaces
- To study separation axioms in Fuzzy Topological spaces

Course Outcomes:

- 1. Able to learn fuzzy set theory.
- 2. Gain Knowledge about fuzzy relations and fuzzy graphs.
- 3. Gain knowledge about the fundamental concepts of fuzzy topological space.
- 4. Understand the relationships between Intuitionistic fuzzy topological spaces and induced fuzzy topological spaces.
- 5. Gain knowledge about fuzzy separation axioms.

UNIT I

Fuzzy Set Theory: Introduction - Sets and Subsets – Fuzzy Subsets – Basic Operations on Fuzzy Subsets – Graphical Representation of Some Terms – Concept of Uncertainty – Support of a Fuzzy set and r-cut or r-level. **Types of Fuzzy Sets:** Introduction - Different Types of Fuzzy Sets – Further Operations on Fuzzy Sets – t-norms and t-conorms or s-norms – The Extension Principle and Application – Oprations for Type 2 Fuzzy Sets – Algebraic Operations with Fuzzy Numbers and Arithmetic.

UNIT II

Fuzzy Relations and Fuzzy Graphs: Introduction - Fuzzy Relations – Projects of a Fuzzy Relation - Fuzzy Graph – Fuzzy Network.

UNIT III

Fuzzy Topological Spaces: Introduction - Fuzzy Topology – Intuitionistic Fuzzy Topological space .**Induced Fuzzy Topological spaces:** Introduction - Lower Semi Continuous Function – Induced Fuzzy Topological Spaces.

UNIT IV

(18 hrs)

(18 hrs)

(18 hrs)

(**18 hrs**)

Connectedness in Fuzzy Topological Space: Introduction - Fuzzy Separated Sets – Fuzzy Connectedness – Some Stronger and Weaker Form of Fuzzy Connectedness.

UNIT V

(18 hrs)

Separation Axioms: Introduction - **Fuzzy** Separation Axiom- Unification of Fuzzy Separation Axiom.

Text Book:

Anjan Mukherjee and Bhattacharya Halder. S, "Fuzzy Set and Fuzzy Topology", Narosa Publishing House PVT. LTD, New Delhi, 2008.

Unit	Chapter	Section	Page No.
Ι	1	1.1 - 1.7	1.1 - 1.10
	2	2.1 - 2.7	2.1 - 2.14
II	3	3.1 - 3.5	3.1 - 3.17
III	4	4.1-4.3	4.1 - 4.8
	5	5.1 - 5.3	5.1 - 5.8
IV	6	6.1 - 6.4	6.1 - 6.20
V	7	7.1 - 7.3	7.1 - 7.15

Reference Books:

- 1. Dr. Sudhir K. Pundir, Dr. Rimple Pundir, "Fuzzy Sets and Their Applications", Pragati Prakashan Educational Publishers, Meerut, 2013.
- 2. N. Palaniappan, "Fuzzy Topology (Second Edition)", Narosa Publishing House, New Delhi, 2006.

Sri Kaliswari College (Autonomous), Sivakasi **Department of Mathematics Research Programme – M.Phil** Semester I (2018 - 2019)

Major Elective Course: Advanced Complex Analysis (18HMAO13) (For those who join from June 2018 and afterwards)

Credits : 5 Hours/Week: 6 **Duration** : 90 hrs Int.Marks : 40 Ext.Marks : 60 Max.Marks:100

Course Objectives:

- To know explicit representations of elementary transcendental functions and other specific functions.
- To study about doubly connected regions.

Course Outcomes:

- 1. Acquire knowledge about Weierstrass theorem.
- 2. Inculcate an insight into Riemann mapping theorem.
- 3. Learn about the basic properties of conformal mapping.
- 4. Demonstrate the main results on regions of finite connectivity.
- 5. Analyze the properties of simply connectedness.
- 6. Develop a sound knowledge and appreciation of the ideas and concepts related to analytic automorphisms of regions in the complex plane.
- 7. Know about the Bieberbach conjecture and its solution.

UNIT I	(18 hrs)
Riemann Mapping Theorem: Introduction – Weierstrass Theorem for Seque	ence of
Analytic Functions – Riemann Mapping Theorem.	
UNIT II	(18 hrs)
Conformal Mappings of Doubly Connected Regions and Regions of Finite C	onnectivity.
UNIT III	(18 hrs)
Simply Connectedness and Equivalent Conditions.	
UNIT IV	(18 hrs)
Analytic Automorphisms of Regions in the Complex Plane.	
UNIT V	(18 hrs)
Univalent Functions Defined on the Open Unit Disc - A Brief History of the I	Bieberbach
Conjecture and its Solution.	
Text Book:	
V. Karunakaran, "Complex Analysis", Narosa Publishing House, New Delhi	, Second

Edition. 2006.

Unit	Chapter	Section	Page No.
Ι	5	5.1.1 - 5.1.14	333 - 342
II	5	5.3	356 - 365
III	5	5.4	365 - 371
IV	5	5.5	371 - 382
V	5	5.6, 5.7	383 - 406

Reference Books:

- 1. Walter Rudin, "Real and Complex Analysis", McGraw Hill Book Company, Singapore, Third Edition.
- 2. Lars V.Ahlfors ,"Complex Analysis", McGraw Hill Book Company, New Delhi, Third Edition.

Sri Kaliswari College (Autonomous), Sivakasi Department of Mathematics Research Programme – M.Phil Semester II (2018 - 2019) Project (18HMAJ21) (For those who join from June 2018 and afterwards)

Credits : 5

Course Objectives:

- To enable students understand the purpose and importance of research in Mathematics.
- To plan and carry out research work by conducting review, collecting materials, and find the results by applying different critical theories.

Course Outcomes:

- 1. Get familiarized with basic concepts of research.
- 2. Identify and state the research topic.
- 3. Design and conduct research study accordance with the identified research need.
- 4. Develop skill to search online and offline sources to carryout research.
- 5. Assess ways to collect, compile and conduct a data analysis.
- 6. Appropriately document the data collected.
- 7. Apply academic skills to present the research study findings in a formal academic oral presentations and a written research paper.

Project work:

- Each learner can select for his/her research project any one of the areas of Mathematics in consultation with his/her guide and the Head of the Department.
- The project dissertation should be submitted to the Principal through the Head of the Department of Mathematics one week prior to the commencement of the summative examination. If a candidate fails to submit his/her project report on the date presented above, he/she may be permitted to submit the same 4 days prior to the date of viva-voce examination with a fine as prescribed by the college.
- Each learner shall submit 2 copies of his/her project dissertation for valuation.
- The project dissertation shall contain at least 50 pages excluding bibliography and appendices.
- The project dissertation shall be valued for a total of 150 marks out of which 75 is internal mark and 75 is external mark and sum of the two is taken for 150.
- The viva-voce carries 50 marks and it will be conducted jointly by the guide and the external examiner.
- For a pass in this course as a whole, a learner should secure at least 50% marks in project dissertation and viva-voce put together.